EPAH6052: Antimicrobial Resistance

DALHOUSIE UNIVERSITY

Finlay Maguire Dalhousie University

Shared Hospital Laboratory Public Health Alliance for Genomic Epidemiology

Overview

1. Antimicrobials

- Properties of an (ideal) antimicrobial
- Types of antimicrobial
- Antibiotic mechanisms
- Antibiotic categories
- Antibiotic usage
- 2. Antimicrobial Resistance
 - Antibiotic Susceptibility Testing
 - AMR mechanisms
 - Origin and evolution of AMR
 - Surveillance of AMR
 - Burden of AMR

- 3. Solutions to Antimicrobial Resistance
 - Improving Surveillance
 - New Antimicrobials
 - Alternatives to Antimicrobials
 - Antimicrobial Stewardship
 - Improved Rapid Diagnostics

Antimicrobials is an umbrella term

First, what does an ideal antimicrobial do?

Effective against pathogen -> pharmacodynamics

Pharmacodynamics - interaction of antimicrobial with microbe

Minimum Inhibitory Concentration (MIC) - concentration required to inhibit growth

Time-Dependent: Efficacy correlates with time above MIC (T>MIC) - more doses/extended release

Concentration-Dependent Killing: Efficacy correlates with peak concentration (Cmax/MIC) or AUC/MIC - 1 big dose/extended intervals

AUC/MIC-Dependent Killing: Total drug exposure over time relative to MIC monitored individualised dosing

https://www.omicsonline.org/articles-images/JBB-S2-002-g002.html

Post-Antimicrobial Effect (PAE): Persistent suppression

Eagle Effect: Lower efficacy at high doses

Inoculum Effect: Lower efficacy when lots of microbe

Low host toxicity -> high therapeutic index

- Host cells and microbial cells
 share similarities
- Antimicrobial can damage these shared aspects of host cell
- Toxic by-products from metabolic breakdown of antimicrobial
- Low Therapeutic Index (TI):
 - Therapeutic drug monitoring (TDM)
 - Adjustments for renal/hepatic impairment
 - Damage to sensitive systems (e.g., ototoxicity)

Toxic Dose / Effective Dose

Low host toxicity -> high therapeutic index

- Host cells and microbial cells
 share similarities
- Antimicrobial can damage these shared aspects of host cell
- Toxic by-products from metabolic breakdown of antimicrobial
- Low Therapeutic Index (TI):
 - Therapeutic drug monitoring (TDM)
 - Adjustments for renal/hepatic impairment
 - Damage to sensitive systems (e.g., ototoxicity)

Selective action -> only kill the target pathogen

- Killing non-target microbes disrupts microbiome function
- Microbial diversity & competition is protective
- Microbiome has complex interactions with immune system
- Appropriate spectrum of activity (narrow vs broad)

Tsigrelis, Constantine. "Recurrent Clostridioides difficile infection: Recognition, management, prevention." Cleveland Clinic journal of medicine 87.6 (2020): 347-359. Microbiology 21.12 (2023): 772-788.

Selective action -> only kill the target pathogen

Killing non-target microbes disrupts microbiome function Microbial diversity & competition is protective Microbiome has complex interactions with immune system Appropriate spectrum of activity (narrow vs broad)

Fishbein, Skye RS, Bejan Mahmud, and Gautam Dantas. "Antibiotic perturbations to the gut microbiome." *Nature Reviews Microbiology* 21.12 (2023): 772-788.

Hagan, Thomas, et al. "Antibiotics-driven gut microbiome perturbation alters immunity to vaccines in humans." *Cell* 178.6 (2019): 1313-1328.

Good pharmacokinetics -> drug gets where it needs to be

Absorption: high bioavailability and predictable kinetics robust to food/pH

Distribution: high volume gets to infection sites (intracellular/CNS/bone/abscesses)

Metabolism: minimal complex breakdown to avoid drug-drug interactions or toxicity

Elimination: long half-life to reduce frequency of dosing and dual elimination (renal + hepatic)

Same PK for all patients!

Cost-efficient to manufacture & ship at scale

15 years of work from discovery to large-scale production of penicillin (1929-1944)

In US Antimicrobials 42% more likely have shortages than average drug (and remain in shortage).

Fragile/unsustainable supply chains due to low margins

Small number of geographically concentrated manufacturers

Need coincides with civil/social disruption

https://www.nlm.nih.gov/exhibition/fromdnatobeer/exhibition-interactive/illustrations/penicillin-alternative.html

https://qualitymatters.usp.org/supply-chain-vulnerabilities-for-ant imicrobial-medicines

Cost-effective to actually use

Cost effectiveness is a function of:

- **Direct costs** (acquisition, administration, monitoring)
- Clinical Outcomes (cure rates, mortality reduction, length of hospital stay)
- Societal Impacts (QALYs/DALYs, resistance, productivity)

Metrics:

- Cost per Life-Year Saved
- Cost per Cure/Clinical Success
- Cost-per Quality-Adjusted Life Year Gained
- Incremental Cost-Effectiveness Ratio (ICER): difference in cost / difference in effect

Cost Effectiveness Thresholds:

- UK: 20,000-30,000GBP / QALY (0.57-0.86 GDP per capita)
- **Canada**: \$50,000 / QALY (0.93 GDP per capita)
- WHO: 1-3x GDP per capità per QALY (~i.e., \$1,200USD to \$1,500USD / QALY in Yemen or Burundi)

~191/635 (30.7%) of WHO Essential Medicine List are antimicrobials

Last: low propensity to lead to antimicrobial resistance!

Ampicillin

2008 2010 2012 2014 2016 2018

Cefalexin

Year

8 50%

45%

Graph of Vancomvcin resistance based on the National Nosocomial Infections Surveillance System Report, 2003

15%

10%

5%

0%

2008 2010 2012 2014 2016 2018

Norfloxacin

Amoxicillin-clavulanate

Year

Keighley, Caitlin, et al. "Multi-year antimicrobial-resistance trends in urine Escherichia coli isolates from both community-based and hospital-based laboratories of an Australian local health district." Journal of Global Antimicrobial Resistance 31 (2022): 386-390.

Antibiotics will be most of today but let's briefly discuss antivirals, antifungals, and antiparasitics

Antivirals - Viruses

- Most antivirals target small number of viruses (HIV, HSV, Hep B/C, Influenza A/B)
- Retroviruses, DNA viruses, and RNA viruses largely distinct antivirals (broad and narrow spectrum antivirals e.g., remdesivir in RNA viruses vs rimantidine in influenza)
- Generally target/block specific viral proteins/functions (e.g., acyclovir) or push mutational rate beyond viability (e.g., paxlovid)
- Specificity challenging:
 - Viruses hijack host cell machinery
 - Toxicity is common
- Rapid emergence of resistance:
 - Viruses evolve quickly
 - Current avian influenza have resistance to 1/2 current flu antivirals
 - Combination therapies common e.g., HIV
- Recent focus on immunotherapies (i.e., antibodies targeting the virus that help your immune system fight them) - \$\$\$

Antifungals - 4 main classes and growing importance

- Historically less prioritised most invasive fungal disease associated with comorbidities/immunosuppression
- Emergence/growing burden of mycoses and antifungal resistance
 - Yeasts: Candida, Cryptococcus
 - Filamentous/moulds: Aspergillus, Tinea.
 - Both/dimorphic: *Coccidioides, Histoplasma, Blastomyces*
- Specificity challenging:
 - Mammal cells very similar to fungal
 - Toxicity/cross-reactivity common (and patients often frail)
- 4 main classes of antifungals:
 - Azoles (fluconazole)
 - Echinocandins (caspofungin)
 - Polyenes (amphotericin B)
 - Other (flucytosine)
- Candida auris climate change-driven repeat resistant pathogen!

Antifungals - 4 main classes and growing importance

- Historically less prioritised most invasive fungal disease associated with comorbidities/immunosuppression
- Emergence/growing burden of mycoses and antifungal resistance
 - Yeasts: Candida, Cryptococcus
 - Filamentous/moulds: Aspergillus, Tinea.
 - Both/dimorphic: *Coccidioides, Histoplasma, Blastomyces*
- Specificity challenging:
 - Mammal cells very similar to fungal
 - Toxicity/cross-reactivity common (and patients often frail)
- 4 main classes of antifungals:
 - Azoles (fluconazole)
 - Echinocandins (caspofungin)
 - Polyenes (amphotericin B)
 - Other (flucytosine)
- Candida auris climate change-driven repeat resistant pathogen!

Mycology | Research Article | 30 June 2022

f X in 🗞 🖬 ¥

Candida auris Pan-Drug-Resistant to Four Classes of Antifungal Agents

Authors: Samantha E. Jacobs 🥝, Jonathan L. Jacobs 😌, Emily K. Dennis 😌, Sarah Taimur, Meenakshi Rana, Dhruv Patel, Melissa Citman 🤤, SHOW ALL (19 AUTHORS), Vishnu Chaturvedi 😌 🔛 | AUTHORS INFO & AFFILIATIONS

https://www.cdc.gov/candida-auris/tracking-c-auris/index.html

Antiparasitics - diverse and often quite toxic!

- Parasitic infections often chronic & highly morbid => high global burden
- Hard to develop: host toxicity problem and complex resistance
- Antiprotozoals:
 - Nitroimidazoles (Metronidazole/Tinidazole) Anaerobic protozoa (*Trichomonas, Giardia, Entamoeba*)
 - Antimalarials (Artemisinin/Hydroxychloroquine/Atovaquone-proguanil) Plasmodium species
 - Antifolates (Sulfadiazine + Pyrimethamine, Trimethoprim-sulfamethoxazole) Toxoplasmosis

• Anthelmintics

- Benzimidazoles (Albendazole/Albendazole) nematodes, cestodes, some trematodes
- Avermectins (Ivermectin) Strongyloides, onchocerciasis, scabies
- Praziquantel nematodes/cestodes

• Ectoparasiticides

- Pyrethroids (Permethrin) scabies, lice
- Organophosphates (Malathion) resistant lice

Broad-spectrum

- Nitazoxanide cryptosporidium and Giardia
- \circ \quad Paromomycin amebiasis and leishmaniasis.
- Pentamidine Pneumocystis and trypanosomiasis

Antimicrobial resistance is a problem for all types of antimicrobial but do a deeper dive on antibiotics!

Boolchandani, Manish, Alaric W. D'Souza, and Gautam Dantas. "Sequencing-based methods and resources to study antimicrobial resistance." Nature Reviews Genetics 20.6 (2019): 356-370.

Boolchandani, Manish, Alaric W. D'Souza, and Gautam Dantas. "Sequencing-based methods and resources to study antimicrobial resistance." Nature Reviews Genetics 20.6 (2019): 356-370.

Antibiotic Groupings - Family/Target

IN	HIBIT	CLASIFIC	CATION		A	NTIBIOTICS				Amino-	Gentamycin	Neomycin	9	treptomycin
				Penicinil	lase – Sensi	ble			30S	glycosides	Amikacin	Tobramycir	1	
			Natural Penicillins	Penicillin (G: Na, K, Pro	ocainic, Benz	athine (IV, IM)			Tetracyclins	Doxycycline	Demeclocylir	1*	Minocycline
			(narrow spectrum)	Penicillin	V: VO			-			Tetracyclin	Tigecyclin		
			Aminopenicillins	Ampicillin				Protein		Oxazolidonones	Linezolid	-		
			(broad spectrum)	Amoxicilli	n			Synthesis	505	Streptogramins	Quinupristin/Dalfopris	tin		
			Penio	cinillase – Resi	stant (very n	arrow spectrun	n)		505	Cloramphenicol				
		Penicillins	Nafcillin	Ox	acillin	Di	cloxacillin			Macrolides	Erythromycin	Azithromycin	Clari	hromycin
				Antipseudomo	nal (extended	d spectrum)			-1	Lincosamides	Clindam	cin	Linco	omycin
				Ticarcillin		, ,	The second s	DNA	Fluor	rquinolones	Ciprofloxacin	Norfloxacin	Levofloxacin	Ofloxacin
Cell			Carboxipenicillins	Carbenicil	lin			topoisomerases			Sparfloxacin	Woxifioxacin	Gemifioxacin	Enotioxacin
				Diporacilliu	2				Quin	olones	Nalidixic Acid		C 10 1 :	C 10 1
Wall			Uroidopopicilling	Azlocillin	1			Folic Acid	Sulfo	onamiaes	Suitamethoxazole	Ag Sulfadiazine	Sulfasalazin	e Suffisoxazole
			oreidoperitciinits	Mozlocilli				Synthesis	DHE	P inhibitors	(SIVIA)	im (TMP)	Pinyn	othamino
S			1º Generation	Cefazolin	Con	halovino	Conhanirin	DNA (damaga)	Motr	k ministrois	Timetirop		Firyi	letilalilille
y			I Generation	Cofadrovil	Cop	hadring	Conhalotin	mPNA synth	Difan	nnim				
n	Beta			Cefurovim	Cepi	mandolo	Cofprozil	minina synth.	Njun	npiin				
t	Lactams		2º Gonoration	Cefuritin	Cefa	manuole	Cerprozii	_						
h			2 Generation	Cefotatan	Celt	alar	Cermetazole	-						
е		Cenhalosporins		Celotetan	Cela		Caftanidina							
s		cephalosponno	2º Constation	Celoperaz	one Celt	naxone	Celtazidime	_						
i			5 Generation	Cerpodoxi	me Cert	izoxime	Celotaxime	-						
s				Cerdinir	Cen	ibuten	Cenxime	_						
			A ^o Companyian	Cefanima	1	Cafain	*	_						
			4 Generation	Celepime	2	Cerpin	ome ·							
		Carlana	5 Generation	Certarolin	e Denimente		an i Cidentatian	_						
		Carbapenems	Weropenem	Ertapenem	Doripenen	n imipene	m + Cylastatine							
		Nionobactams	Aztreonam	Teesheed		Claure	In min Anial	-						
1	***	** Beta-lactamase inhib.	Suibactam	l azobaci	lam	Clavu	Ianic Acid							
	No	Glycopeptides	Vancomy	cin		Bacitraci	in	-						
	lactam		leicoplar	nin		Polymyxir	n B							

Antibiotic Groupings - Bacteriostatic/Bacteriocidal

- Bacteriostatic prevents growth *in-vitro*
- Bacteriocidal kills bacteria in-vitro
- Most ABX fall on spectrum
- Activity is organism/site-specific

Generally:

- Bacteriocidal for sterile sites (endocarditis/meningitis/osteomyelitis) or immunocompromised BUT adverse consequence of lytic/endotoxin surge
- Bacteriostatic can better control toxin production and may cause less damage to microbiome

BUT clinical relevance is **contextual**

Pankey, George A., and L. D. Sabath. "Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections." Clinical infectious diseases 38. (2004): 864-870.

Antibiotic Groupings - Pharmacodynamics

Model	Optimized by	Representation	Example
Time-Dependent Killing	increasing the concentration time spent above the MIC	T>MIC	Beta-lactams
Concentration-Dependent Killing	increasing the peak plasma concentration	C-max/MIC	Aminoglycosides
AUC-Dependent Killing	increasing cumulative concentration exposure	AUC/MIC	Fluoroquinolones

Antibiotic Groupings - Organisms

	Gra	am positive c	occi	-	Gra	am negative	bacili		Gram-nega	tive cocci	Anaerobes	Atypicals
	MRSA	MSSA	Streptococci	E. coli	P. mirabilis	Klebsiella	Pseudomonas	ESCAPPM	N. gonorrhoeae	N. meningitidis	Anderoses	e.g. Mycoplasma
Penicillin			Penicillin G									
Anti-staphylococcal penicillins	l	Naficillin	/Oxacillin									
Aminopenicillins			Ampio	cillin/Amox	icillin				I	Amp/Amox		
1st-gen cephalosporin			Cefazo	lin, cephal	exin							E.
2nd-gen cephalosporin	ļ		Cepho	tetan, Cefo	xitin						Cephotetan, Cefoxitin	
3rd-gen cephalosporin	l		C	eftriaxone					Ceftriaxone			
	r				Ceftazidim	e						
4th-gen cephalosporin	-		and a little and a little		(Cetep	ime				A	ř.
Aminopenicillins with beta-	-	/	Amoxicillin + cl	avulanate	(Augmentin)						Amox-clav	6
lactamase inhibitors	ł		Ampaciiiii +	Piperacill	(Unasyn)	am (Zosyn)			i – 1	Piperacillin	Amp-sui	8
	-		F	rtanenem	11 + 10200400	am (203911)				Ertapenem	Fiazobaciam (203911)	6
Carbapenems				aponom			mipenem, Mero	penem		Litaponom		
Monobactams							Aztreona	ım				
	[Ciprofloxacir	1				Ciprofloxa	cin		1		5
Quinolones	[Levoflox	xacin					Levofloxacin
	L		Mo	oxifloxacin						Moxiflo	xacin	
Aminoglycosides					Ge	nt/Tobra/Am	nikacin					
Lincosamide		Clindamyaci	n								Clindamyacin	
Macrolides		Azithro	omycin		-					Azithromycin		Azithromycin
Tetracyclines		Doxyc	ycline							Doxycycline		Doxycycline
Glycopeptides		Vancomycin	1									
Antimetabolite			TMP/SMX (E	Bactrim)				TMP/SMX	2	TMP/SMX		i i
Nitroimidazoles										-	Metronidazole	

See github.com/aetherist/antibiogram for details. For educational purposes only. Consult your local antibiogram for clinical use.

TMP/SMX = Trimethoprim-sulfamethoxazole, MRSA = Methicillin-resistant Staphylococcus aureus, MSSA = Methicillin-sensitive Staphylococcus aureus, ESCAPPM = Enterobacter spp., Serratia spp., Citrobacter freundii, Aeromonas spp., Proteus spp., Providencia spp. and Morganella morganii.

Antibiotic Groupings - Activity Spectrum

Narrow Spectrum	Broad Spectrum	Extended Spectrum
 2nd generation cephalosporins Amoxicillin Ampicillin Metronidazole 	 3rd generation cephalosporins (except ceftazidime) Amoxicillin/clavulanate Ampicillin/sulbactam 	 Ceftazidime 4th generation cephalosporins Anti-pseudomonal penicillins Aztreonam Ertapenem Ceftaroline Fluoroquinolones Aminoglycosides Colistimethate

Antibiotic Groupings - Usage Categories

Based on WHO AWaRe classification of antibiotics for evaluation and monitoring of use, 2023

S. Gluschitz

Which antibiotics are actually used?

Challenging comparing antibiotics with different dosing

Ticarcillin (carboxypenicillin)

3 grams intravenously every 4 hours (~18g per day)

Lascufloxacin (fluoroquinolone)

75mg orally once per day

(Unusual antibiotics to show extremes)

J01CA04 AMOXICILLIN

amoxicillin 25mg/mL susp Apo-Amoxi 125mg Susp

JAMP-Amoxicillin 125mg/5mL Susp Amoxil 25mg/mL Susp (discontinued)

amoxicillin 50mg/mL susp

Amoxicillin 250mg Susp Amoxicillin Sugar Reduced 50mg/mL O/L Amoxicillin-250mg/5mL Susp Apo-Amoxi 250mg Susp JAMP-Amoxicillin 250mg/5mL Susp Novamoxin 250mg Susp Novamoxin Sugar Reduced 50mg/mL O/L Sandoz Amoxicillin 250mg/5mL Susp Amoxil 50mg/mL Susp (discontinued)

amoxicillin 250mg cap

Amoxicillin 250mg Cap Apo-Amoxi 250mg Cap Auro-Amoxicillin 250mg Cap Jamp-Amoxicillin 250mg Cap Novamoxin 250mg Cap Amoxil 250mg Cap (discontinued)

amoxicillin 250mg chewable tab Novamoxin 250mg Chewtab Amoxil 250mg Chewtab (discontinued)

amoxicillin 500mg cap

Amoxicillin 500mg Cap Amoxicillin 500mg Cap Apo-Amoxi 500mg Cap Auro-Amoxicillin 500mg Cap Jamp-Amoxicillin 500mg Cap Novamoxin 500mg Cap Amoxil 500mg Cap (discontinued)

Normalised Units: Defined Daily Dose per 1,000

Defined daily dose (DDD): standardised statistical measure of drug consumption

Assumed average maintenance dose per day for a drug used for its main indication in 70kg adults*

Defined for all/most formulations of each drug in the Anatomical Therapeutic Chemical (ATC) Classification System by the WHO Collaborating Centre for Drug Statistics (Norwegian Institute of Public Health)

Patient Prescribed: Amoxicillin 500mg 4 times per day for 5 days

Dose per Day = 4 x 500mg = 2g

Amoxicillin DDD from WHO: 1.5g

```
Patient Receives Per Day: 2g / 1.5g = 1.3331DDD
```

```
Patient Total DDD = 5 * 1.333DDD = 6.666DDD
```

Prescribed daily dose (PDD): average dose prescribed according to a representative sample of prescriptions

Antimicrobial Usage/Consumption (AMU/AMC)

AMU: actual amount taken by patients

AMC: amount purchased/sold

Buying lots of antimicrobials but using carefully: high AMC but low AMU

Global:

- IQVIA USD\$49 billion Market Capitalisation Contract Research Organisation - AMC
- WHO Global Antimicrobial Resistance and Use Surveillance System (GLASS) - AMU

Domestic:

- Canadian Antimicrobial Resistance Surveillance System (CARSS) - AMC & AMU

GLASS Enrolment Map October 2024

Number of countries enrolled in GLASS: 140

The boundaries and names shown and the designations used on this map do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement. Data source: World Health Organization Map production: Information Evidence and Research (IER) World Health Organization © WHO 2019. All rights reserved.

Globally: beta-lactams are majority of AMU

Klein, Eili Y., et al. "Global trends in antibiotic consumption during 2016–2023 and future projections through 2030." Proceedings of the National Academy of Sciences 121.49 (2024): e2411919121.

Hospitals vs Paediatric vs Community

Figure 4. Annual pediatric - antimicrobial use by class in participating CNI

What about animal usage?
Antibiotics growth promoters

Subtherapeutic antibiotic doses

3-5% feed conversion efficiency and 5-10% weight gain in poultry

Mechanism unclear but potentially higher density, subclinical infection clearance, less bacterial consumption in guts

Relatively widely banned to some degree (but industry very resistant initially)

Normalisation challenging in animals

kg biomass: animal biomass average live weights at slaughter

PCU: Population correction unit, (number by average weight at treatment) - control differences in AMU at different production stages given majority of AMU occurs in relatively young animals below their weight at slaughter (EU vs CA)

Livestock vs Domestic/Companion Animals - very different use-patterns

Summary

1. Antimicrobials

- Selective action, favourable PK/PD
- Antivirals/fungals/parasitics hard to develop due to overlap between host and microbe
- Antibiotics have many targets e.g., cell wall (beta-lactams), protein synthesis (macrolides & tetracyclines), and transcription (quinolones)
- Antibiotic organised into mechanistic families (or other properties/usage groups)
- Antibiotic usage driven by broad-spectrum penicillins in human and tetracyclines in animals

2. Antimicrobial Resistance

- Antibiotic Susceptibility Testing
- AMR mechanisms
- Origin and evolution of AMR
- Surveillance of AMR
- Burden of AMR

3. Solutions to Antimicrobial Resistance

- Improving Surveillance
- New Antimicrobials
- Alternatives to Antimicrobials
- Antimicrobial Stewardship
- Improved Rapid Diagnostics

So, what is antimicrobial resistance?

Antimicrobial resistance has 2 different definitions

- 1. Antimicrobial resistance (AMR) is when a specific microbe is shown to have an elevated minimum inhibitory concentration (MIC) to a specific antibiotic using <u>in-vitro</u> Antibiotic Susceptibility Testing (AST).
- 2. Alternatively, AMR is defined as when a specific microbe **is not inhibited or killed** by the **recommended dose** of a specific antibiotic at the **site of infection** <u>*in-vivo*</u>.

An infection caused by a resistant microorganism is unlikely to be cured by that antibiotic

Disk Diffusion Assays - Quick and Dirty

Gradient diffusion testing (E-Test Strips)

Kadeřábková, N., Mahmood, A.J.S. & Mavridou, D.A.I. Antibiotic susceptibility testing using minimum inhibitory concentration (MIC) assays. npj Antimicrob Resist **2**, 37 (2024). https://doi.org/10.1038/s44259-024-00051-6

Aside: Vancomycin-dependent *Enterococcus*

Farrag, N. "Vancomycin-dependent enterococcus." Lancet 348 (1996): 1581-82.

Broth Microdilution (BMD) is gold standard

MIC values are typically reported as ranges ($\leq 0.5, 1, 2, 4, 8, \geq 16 \mu g/mL$)

Censored (values above or below the lowest tested concentration)

2-fold dilution means MIC ordinal rather than continuous

Non-normal residuals even when transformed

Technical variability requires dealing with replicates

No growth OGrowth

MIC 🛞

Kadeřábková, N., Mahmood, A.J.S. & Mavridou, D.A.I. Antibiotic susceptibility testing using minimum inhibitory concentration (MIC) assays. npj Antimicrob Resist **2**, 37 (2024). https://doi.org/10.1038/s44259-024-00051-6

Modern clinical microbiology requires automation

Why do we have 2 different definitions of resistance?

Interpreting MICs - Epidemiological Cut-Offs (ECOFFS)

- ECOFF = highest MIC value of isolates without acquired AMR to specific antibiotic tested
- Split MIC distributions of "wild type" isolates from "resistant" isolates
- Clear ECOFF for some bug-drug combinations but challenging when distributions overlap
- Goal to detect acquired AMR that may, or may not, be clinically significant
- Primarily used in surveillance rather than to guide therapy in human or animal health

Interpreting MICs - Clinical Breakpoints

Susceptible:

MIC less or equal to safely achievable antibiotic concentrations at site of infection when a patient or animal following a standard dosing regimen.

Resistant:

MIC higher than this safely achievable standard concentration

Intermediate (not all pathogen-antibiotics):

Grey-zone between definite susceptibility and definite resistance.

Susceptible Dose-Dependent (CLSI only):

Intermediate subcategory for drugs that can concentrate more at specific anatomical sites

Setting breakpoints is relatively complicated

Clinical breakpoints set collaboratively by expert committees (clinical microbiology, infectious diseases, pharmacy, basic science) for each antibiotic-bacteria pair:

- Antibiotic mechanism of action
- Known AMR mechanisms
- Clinical outcome data
- Pharmacokinetics and pharmacodynamics (PK/PD)
- MIC distributions and ECOFF values
- Difference types of infection (sometimes)

Tentative breakpoint published for consultation and refined before the final breakpoints (which are reviewed regularly)

Animal and human breakpoints are not alway the same, as animals may metabolise some antibiotics differently and so may achieve different tissue concentrations.

2 different sources with different priorities:

- Clinical & Laboratory Standards Institute (CLSI) optimising laboratory standardization/reproducibility (private)
- European Committee on Antimicrobial Susceptibility Testing (EUCAST) optimising clinical outcomes (public)

What are the primary mechanism of AMR?

Boolchandani, Manish, Alaric W. D'Souza, and Gautam Dantas. "Sequencing-based methods and resources to study antimicrobial resistance." Nature Reviews Genetics 20.6 (2019): 356-370.

Reduced permeability

Antibiotic efflux

Antibiotic modification/ degradation

Where does AMR come from?

AMR is older than human use of antibiotics

Letter | Published: 31 August 2011

Antibiotic resistance is ancient

Vanessa M. D'Costa, Christine E. King, Lindsay Kalan, Mariya Morar, Wilson W. L. Sung, Carsten Schwarz, Duane Froese, Grant Zazula, Fabrice Calmels, Regis Debruyne, G. Brian Golding, Hendrik N. Poinar 🖾 & Gerard D. Wright 🖾

Nature 477, 457-461 (2011) Cite this article

Diverse signatures of AMR in 30,000-year-old Beringian permafrost sediment cores

Antibiotic Resistance Is Prevalent in an Isolated Cave Microbiome

Kirandeep Bhullar, Nicholas Waglechner, Andrew Pawlowski, Kalinka Koteva, Eric D. Banks, Michael D. Johnston, Hazel A. Barton, Gerard D. Wright

Published: April 11, 2012 • https://doi.org/10.1371/journal.pone.0034953

Lechuguilla Cave, New Mexico isolate for >4 million years: culturable bacteria highly resistant >= 14 antimicrobials

Why is AMR so old if antibiotics are only 80-120 years old?

Most antibiotic classes are natural products

© COMPOUND INTEREST 2014 - WWW.COMPOUNDCHEM.COM | Twitter: @compoundchem | Facebook: www.facebook.com/compoundchem Shared under a Creative Commons Attribution-NonCommercial-NoDerivatives licence.

Most antibiotic classes are natural products

© COMPOUND INTEREST 2014 - WWW.COMPOUNDCHEM.COM | Twitter: @compoundchem | Facebook: www.facebook.com/compoundchem Shared under a Creative Commons Attribution-NonCommercial-NoDerivatives licence.

C

Antibiotic production is part bacterial ecology/competition

So - what is the first bacteria resistant to antibiotics produced by a bacteria?

Antibiotic producers HAVE to be resistant or they die

- Penicillin producing *Penicillium chrysogenum* Fungi so no cell wall
- Tetracycline producing *Kitasatospora aureofaciens* Efflux

Biosci. Biotech. Biochem., 59 (10), 1835-1841, 1995

A Self-defense Gene Homologous to Tetracycline Effluxing Gene Essential for Antibiotic Production in *Streptomyces aureofaciens*

Tohru DAIRI,* Kazuo AISAKA, Ryoichi KATSUMATA, and Mamoru HASEGAWA[†]

Tokyo Research Laboratories of Kyowa Hakko Kogyo Co., Ltd., 3-6-6, Asahimachi, Machida-shi, Tokyo 194, Japan Received January 13, 1995

• Streptomyces producing *Kitasatospora bikiniensis*

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Aug. 1979, p. 176-182 0066-4804/79/08-0176/07\$02.00/0 Vol. 16, No. 2

Streptomycin Resistance in a Streptomycin-Producing Microorganism

JANET M. PIWOWARSKI AND PAUL D. SHAW* Department of Plant Pathology, University of Illinois, Urbana, Illinois 61801

Received for publication 23 May 1979

But how does a bacteria BECOME resistant?

AMR can rapidly evolve from random changes to DNA

Mostly Suceptible

AMR can rapidly evolve from random changes to DNA

Mostly Suceptible

AMR can rapidly evolve from random changes to DNA

Mostly Suceptible

Mostly Resistant

Can see in real-time: Megaplate Experiment

All tuberculosis resistance occurs via inherited mutation

Farhat, M., Cox, H., Ghanem, M. et al. Drug-resistant tuberculosis: a persistent global health concern. Nat Rev Microbiol 22, 617–635 (2024). https://doi.org/10.1038/s41579-024-01025-1

Selective window drives fixation of these mutations

Antibiotic concentration

Stanton, I.C., Murray, A.K., Zhang, L. et al. Evolution of antibiotic resistance at low antibiotic concentrations including selection below the minimal selective concentration. Commun Biol 3, 467 (2020). https://doi.org/10.1038/s42003-020-01176-w

Mutational resistance can persist without antibiotic

Mutational resistance alone would be a problem but bacteria can acquire resistance another way!
AMR can be acquired from unrelated bacteria via LGT

A. Vertical evolution

Lateral Gene Transfer (LGT) == Horizontal Gene Transfer (HGT)

LGT can be complex - nested mobile DNA elements

Sheppard, Anna E., et al. "Nested Russian doll-like genetic mobility drives rapid dissemination of the carbapenem resistance gene bla KPC." Antimicrobial agents and chemotherapy 60.6 (2016): 3767-3778.

LGT can happen within individual people or animals

Nji, Emmanuel, et al. "High prevalence of antibiotic resistance in commensal Escherichia coli from healthy human sources in community settings." *Scientific reports* 11.1 (2021): 3372.

LGT can happen within hospitals

Time (months)

Raabe, Nathan J., et al. "Real-time genomic epidemiologic investigation of a multispecies plasmid-associated hospital outbreak of NDM-5-producing Enterobacterales infections." International Journal of Infectious Diseases 142 (2024): 106971.

LGT can happen between sectors

Andersson, Dan I., and Diarmaid Hughes. "Microbiological effects of sublethal levels of antibiotics." Nature Reviews Microbiology 12.7 (2014): 465-478.

Nature Reviews | Microbiology

How big a problem is AMR?

- Clinical Approval
- Resistance First Reported
- Resistance Same Year as Approval

- Clinical Approval
- Resistance First Reported
- Resistance Same Year as Approval

ON THE ANTIBACTERIAL ACTION OF CULTURES OF A PENICILLIUM, WITH SPECIAL REFERENCE TO THEIR USE IN THE ISOLATION OF *B. INFLUENZÆ*.

Clinic

Anti

Resis

Resis

ALEXANDER FLEMING, F.R.C.S.

From the Laboratories of the Inoculation Department, St Mary's Hospital, London.

Received for publication May 10th, 1929.

WHILE working with staphylococcus variants a number of culture-plates were set aside on the laboratory bench and examined from time to time. In the examinations these plates were necessarily exposed to the air and they became contaminated with various micro-organisms. It was noticed that around a large colony of a contaminating mould the staphylococcus colonies became transparent and were obviously undergoing lysis (see Fig. 1).

Subcultures of this mould were made and experiments conducted with a view to ascertaining something of the properties of the bacteriolytic substance which had evidently been formed in the mould culture and which had diffused into the surrounding medium. It was found that broth in which the mould had been grown at room temperature for one or two weeks had acquired marked inhibitory, bactericidal and bacteriolytic properties to many of the more common pathogenic bacteria.

81

Spagnolo, Fabrizio, Mon

LETTERS TO THE EDITORS

The Editors do not hold themselves responsible for opinions expressed by their correspondents. They cannot undertake to return, or to correspond with the writers of, rejected manuscripts intended for this or any other part of NATURE. No notice is taken of anonymous communications. IN THE PRESENT CIRCUMSTANCES, PROOFS OF "LETTERS" WILL NOT BE SUBMITTED TO CORRESPONDENTS OUTSIDE GREAT BRITAIN.

An Enzyme from Bacteria able to Destroy Penicillin

FLEMING¹ noted that the growth of *B. coli* and a number of other bacteria belonging to the colityphoid group was not inhibited by penicillin. This observation has been confirmed. Further work has been done to find the cause of the resistance of these organisms to the action of penicillin.

An extract of B. coli was made by crushing a suspension of the organisms in the bacterial crushing mill of Booth and Green². This extract was found to contain a substance destroying the growth-inhibiting property of penicillin. The destruction took place on B. coli, it was not necessary to crush the organism in the bacterial mill in order to obtain the enzyme from it; the latter appeared in the culture fluid. The enzyme was also found in M. lysodeikticus, an organism sensitive to the action of penicillin, though less so than Staphylococcus aureus. Thus, the presence or absence of the enzyme in a bacterium may not be the sole factor determining its insensitivity or sensitivity to penicillin.

The tissue extracts and tissue autolysates that have been tested were found to be without action on the growth-inhibiting power of penicillin. Prof. A. D. Gardner has found staphylococcal pus to be devoid of inhibiting action, but has demonstrated a slight

- Clinical Approval
- Resistance First Reported
- Resistance Same Year as Approval

Penicillin treatment was started on 12 February 1941, with 200 mg (10 000 units) intravenously initially and then 300 mg every three hours. All the patient's urine was collected, and each morning I took it over to the Dunn Laboratory on my bicycle so that the excreted penicillin could be extracted to be used again. There I was always eagerly met by Florey and Chain and other members of the team. On the first day I was able to report that for the first time throughout his illness the patient was beginning to feel a little better. Four days later there was a striking improve-

- Clinical Approval
- Resistance First Reported
- Resistance Same Year as Approval

Antimicrobial Resistances frequently co-occur

- Bacteria categorised based on degree of AMR:
 - Multidrug Resistant (MDR): AMR across ≥3 antibiotic classes
 - Extensively Drug Resistant (XDR): AMR to all but ≤2 antibiotics classes
 - Total/Pan-Drug Resistant (TDR/PDR): AMR to all antibiotic classes
- MDR more common in some priority pathogens e.g., ESKAPE (*Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp*)
- Rarely AMR not observed so far for some drug-bug combinations (e.g., penicillin resistance in *Streptococcus pyogenes*)

Acquisition of AMR can explode pathogen population size

- 2002-2017 Norwegian Surveillance Program (NORM) longitudinal cohort study of *E. coli* bloodstream infections (n=22,512)
- Genetic diversity of bacteria can be used to infer population size
- 3/4 subtypes of *E. coli* ST131 had near instantaneous population growth over 1-2 orders of magnitude
- Population explosions coincide with acquisition of CTX-M extended-spectrum β-lactamase

But how much AMR-related burden is there?

Integrated longitudinal surveillance across spatial scales

Surveillance Models:

- **Passive** routine data collected during standard patient care (e.g., standard within-hospital microbiology)
- Active systematic collection for surveillance with standardized protocols often including asymptomatic screening (MRSA/VRE screening, outbreak investigations, community carriage)
- **Syndromic** monitor specific clinical manifestations related to AMR (e.g., treatment failures)
- **Sentinel** network of selected representative sites for broader population or high-risk groups
- Composite sampling of environmental aggregate mixed-sources (e.g., wastewater, feedlot, run-off, slaughterhouse effluent, aquaculture pond water, milk)

Geographic Scales:

- Hospital internal microbiology
- **Regional** hub labs/provincial public health reference labs
- National national reference laboratories and sentinel coordination
- Global large-scale data integration from networks of networks

Subclinical and community hard to accurately surveill for humans and animals

Data collected includes some or all:

- Antibiotic Susceptibility
- Pathogen Typing Genome
- AMR Mechanism
- Treatment

Information flow

Clinical Outcomes

Global: Provides early warning of emerging threats, highlights cross-border dynamics and identifies long-term trends

National: Can understand disease burdens and trends, allows for timely public health intervention, and guides policy

Regional/district: Allows monitoring of local patterns and trends, and informs priorities for resourcing and planning

Local/health facility: Healthcare professionals can make better-informed clinical decisions to ensure better patient outcomes

Local antimicrobial diagnostics and testing

Antibiogram - snapshot of local AMR incidence

How to develop an antibiogram

Antibiogram - snapshot of local AMR incidence

β-Lactams																			
am-negative Bacteria Isolates		Penicillins			Cephalosporins			Carbapenems			Aminoglycosides			FQ	Other				
	(N)	AMP	AMC	TZP	CZO	CXM	СТХ	CAZ	FEP	IPM	MEM	ETP	AMK	GEN	TOB	CIP	ATM	SXT	NIT
Gram-negative bacteria (all)	34 932	28	69	89	59	63	73	-	83	91	95	96	95	880	85	68	69	68	76
Haemophilus influenzae	900	85	93	-	-	96	-	-	-	-	-	-	-	-	-	96	-	92	-
Moraxella catarrhalis	211	-	95	-	-	100	-	-	-	-	-	-	-	-	-	95	-	99	-
Enterobacteriaceae	27 972	28	70	92	60	-	75	-	84	95	99	98	98	89	87	67	79	68	-
Citrobacter koseri (diversus)	550	R	95	98	90	80	95	-	98	98	99	99	100	99	99	96	91	98	87
Enterobacter cloacae	802	R	R	86	R	51	79	-	92	91	98	94	99	93	93	86	86	89	48
Enterobacter aerogenes	543	R	R	85	R	R	82	-	95	65	98	98	100	95	94	85	88	92	25
Escherichia coli	16 810	36	74	93	59	66	71	-	81	99	99	99	99	89	86	62	76	60	94
Klebsiella pneumoniae	5 713	R	79	87	60	70	76	12	85	97	97	97	98	91	86	73	80	77	32
Klebsiella oxytoca	236	R	90	93	-	75	88	-	91	98	98	99	98	95	88	83	83	88	86
Morganella morganii	305	R	R	96	R	R	68	-	92	53	99	99	100	79	79	44	77	61	R
Proteus mirabilis	878	66	93	99	84	92	92	-	94	22	98	96	98	82	87	65	91	62	R
Providencia spp.	111	R	R	95	R	<u></u>	92	-	97	59	95	90	100	79	71	68		84	R
Salmonella spp. (non-typhoid)	566	86	92	99	-	-	97	-	99	-	-	-	-	-	-	-	-	96	-
Salmonella Typhi/Paratyphi	267	73	81	92	-		81		71	-	-			-		-		73	-
Serratia marcescens	652	R	R	95	R	R	91	-	97	71	98	98	100	97	89	87	98	98	R
Shigella spp.	79	37	72	98		-	65	-	78	-	-	-	-	-	-	52	-	48	91
Non-fermenting gram-neg rods	5 638	R	R	77	-	-	-	82	80	76	76	R	82	82	80	73	56	72	-
Acinetobacter baumannii	750	R	R	72	-	-	-	70	70	78	76	R	89	77	77	73	R	82	-
Pseudomonas aeruginosa	3 728	R	R	91	-	R	R	87	90	84	83	R	95	91	95	82	68	R	R
Stenotrophomonas maltophilia	479	R	R	R	-	-	R	66	-	R	R	R	R	R	R	-	R	87	-

FQ = fluoroquinolones, N = number, spp. = species, R = intrinsically resistant, (-) = no data available, or small number of isolates tested (N<30), or antimicrobial agent is not indicated, or not effective clinically. Interpretation standard: CLSI M100 ED29:2019. Presentation standard: CLSI M39-A4:2014.

AMC = Amoxicillin/Clavulanic acid, AMK = Amikacin, AMP = Ampicillin, ATM = Aztreonam, CAZ = Ceftazidime, CIP = Ciprofloxacin, CTX = Cefotaxime, CXM = Cefuroxime, CZO = Cefazolin, ETP = Ertapenem, FEP = Cefepime, GEN = Gentamicin, IPM = Imipenem, MEM = Meropenem, NIT = Nitrofurantoin, SXT = Trimethoprim/Sulfamethoxazole, /Clavulanic acid, TOB = Tobramycin, TZP = Piperacillin/Tazobactam.

Antibiogram - snapshot of local AMR incidence

Cumulative Antibiograms

Help define local antibiotic prescribing guidelines e.g. empiric therapy

> Monitoring of resistance trends over time In a specific ward, hospital, country etc...

Consolidation of AST results = Antibiogram

Define and update antibiotic therapy policies

Empiric antibiotic therapy

Regional surveillance - Long Term Acute Care Hospitals

Regional transmission map for carbapenem-resistant *K. pneumoniae* (CRKP) among 11 Los Angeles area LTACHs.

Han, Jennifer H., et al. "Whole-genome sequencing to identify drivers of carbapenem-resistant Klebsiella pneumoniae transmission within and between regional long-term acute-care hospitals." Antimicrobial agents and chemotherapy 63.11 (2019): 10-1128.

National - Canadian AMR Surveillance System (CARSS)

Consolidates data from 10 federal surveillance programs across human and animal health (across PHAC, CFIA, DFO, and HC-VDD)

- **AMRNet** national laboratory-based surveillance system for human and animal (AMRNet-Vet) AMR data
- Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) - AMU/AMR for select bacteria from humans, animals and retail meat
- Canadian Nosocomial Infection Surveillance Program (CNISP) - hospital infections
- National Microbiology Laboratory (NML) national reference laboratory
- Canadian Primary Care Sentinel Surveillance Network (CPCSSN) - community/primary-care AMU
- Taxa-specific Programs: Gonococcal Antimicrobial Surveillance Program (GASP-Canada), Enhanced Surveillance of Antimicrobial-Resistant Gonorrhea (ESAG), National Laboratory Surveillance of Invasive Streptococcal Disease in Canada (eSTREP), Canadian Tuberculosis Laboratory Surveillance System (CTBLSS)
- Veterinary Antimicrobial Sales Reporting (VASR)

Figure 1: Data flow for AMRNet surveillance system

National - Canadian AMR Surveillance System (CARSS)

Consolidates data from 10 federal surveillance programs across human and animal health (across PHAC, CFIA, DFO, and HC-VDD)

- **AMRNet** national laboratory-based surveillance system for human and animal (AMRNet-Vet) AMR data
- Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) - AMU/AMR for select bacteria from humans, animals and retail meat
- Canadian Nosocomial Infection Surveillance Program (CNISP) - hospital infections
- National Microbiology Laboratory (NML) national reference laboratory
- Canadian Primary Care Sentinel Surveillance Network (CPCSSN) - community/primary-care AMU
- Taxa-specific Programs: Gonococcal Antimicrobial Surveillance Program (GASP-Canada), Enhanced Surveillance of Antimicrobial-Resistant Gonorrhea (ESAG), National Laboratory Surveillance of Invasive Streptococcal Disease in Canada (eSTREP), Canadian Tuberculosis Laboratory Surveillance System (CTBLSS)
- Veterinary Antimicrobial Sales Reporting (VASR)

National - Canadian AMR Surveillance System (CARSS)

Consolidates data from 10 federa Public Health Agency not renewing contracts of and animal health (across PHAC over 800 employees, including 245 at Winnipeg

AMRNet - national labora lab: union

human and animal (AMRI PHAC says contracts of temporary employees will end as COVID-19 funding dries up

- Canadian Integrated Prc Surveillance (CIPARS) - ^{CB} humans, animals and reta
- Canadian Nosocomial Ir (CNISP) - hospital infectic
- National Microbiology L
 laboratory
- Canadian Primary Care (CPCSSN) - community/p
- Taxa-specific Programs
 Program (GASP-Canada
 Antimicrobial-Resistant G
 Surveillance of Invasive S
 (eSTREP), Canadian Tub
 System (CTBLSS)
- Veterinary Antimicrobia

Regional - European Antimicrobial Resistance Surveillance Network (EARS-NET)

Expansion of earlier EARSS (1998-2010) - individual countries submit data in a standard format and EARS-NET collates/cleans/normalises

EARS-NET requires member countries to submit information on antimicrobial susceptibility results for specific pathogens causing invasive infections:

- Escherichia coli
- Klebsiella pneumoniae
- Pseudomonas aeruginosa
- Acinetobacter species
- Streptococcus pneumoniae
- Staphylococcus aureus
- Enterococcus faecalis
- Enterococcus faecium.

Heterogeneous population coverage (large surveillance networks vs sentinel sites)

Over-representing national referral centers and tertiary care hospitals

War, disruption, and displacement drives growth of AMR

 $KP = Klebsiella pneumoniae ACB = Acinteobacter baumanii \Delta = change$

Pallett, Scott JC, et al. "The contribution of human conflict to the development of antimicrobial resistance." *Communications medicine* 3.1 (2023): 153.

AMR Surveillance: WHO GLASS

Combining these data sources to estimate current and future global burden of AMR

O'Neill Report

- KPMG created extrapolation from EARS-Net AMR-associated mortality data
 - EARS-Net only captures invasive disease for a subset of pathogens
 - Over-represents tertiary care
 - Europe only
 - Variability in frequency of blood culture sampling
 - => Biased estimation of current deaths
- Unclear method for extrapolating BSIs to other sites
- National estimates extrapolated from EARS-Net mortality by catchment or average rate multiplied by population
- Criticised by UK National Office for Animal Health for not adequately including antibiotic use in animals

de Kraker, Marlieke EA, Andrew J. Stewardson, and Stephan Harbarth. "Will 10 million people die a year due to antimicrobial resistance by 2050?." *PLoS medicine* 13.11 (2016): e1002184.

Other burden studies

• Many papers estimating effect of AMR on incidence, deaths, hospital length of stay, and health-care costs for pathogen–drug pairs in specific locations

US CDC 2013 & 2019 reports in USA for 18 pathogen-antibiotics pairs
EU and European Economic Area for 2007–15 for 16 pathogen-antibiotic pairs

Cassini, Alessandro, et al. "Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis." The Lancet infectious diseases 19.1 (2019): 56-66.

• Thailand MDR burden in 2010 (Lim et. al.)

Lim, Cherry, et al. "Epidemiology and burden of multidrug-resistant bacterial infection in a developing country." elife 5 (2016): e18082.

• E. coli and K. pneumoniae resistant to 3rd generation cephalosporins and carbapenems in 193 countries in 2014 (Temkin et. al.,)

Temkin, Elizabeth, et al. "Estimating the number of infections caused by antibiotic-resistant Escherichia coli and Klebsiella pneumoniae in 2014: a modelling study." *The Lancet Global Health* 6.9 (2018): e969-e979.

Counterfactual Challenge in AMR Burden Estimation

How much harm is done by antibiotic-resistant infections, **relative to the harm the same infections would do if they were susceptible** to all antimicrobial drugs that are normally effective against that species of bacteria?

Current Situation

Susceptible-Infection Counterfactual

With Intervention

Reduced human/veterinary antibiotic use (1, 7) Improved antibiotic choice (2) Vaccination reducing secondary infections (4b) New antibiotics (6)

No-Infection Counterfactual

How much harm is done by antibiotic-resistant infections, **relative to a situation in which such infections did not occur** at all because they were prevented (e.g., by better infection control or a vaccine?)"

de Kraker, Marlieke EA, and Marc Lipsitch. "Burden of antimicrobial resistance: compared to what?." Epidemiologic reviews 43.1 (2021): 53-64.

Dunachie, Susanna J., Nicholas PJ Day, and Christiane Dolecek. "The challenges of estimating the human global burden of disease of antimicrobial resistant bacteria." Current Opinion in Microbiology 57 (2020): 95-101.

With Intervention

Infection prevention and control (3) Vaccination against bacterial pathogens (4a) Water, Sanitation and Hygiene (WASH) (5) Reduced livestock transmission (8)

Global Burden of Disease - AMR (IHME Study)

Estimate: Global burden (205 countries & territories) for 23 pathogens and 88 pathogen–antibiotic combinations using systematic literature reviews, hospital systems, surveillance systems

AMR attributable deaths

- Most conservative estimate of AMR burden
- Attributable deaths measures people who would not have died of infection if it was treatable (i.e., if there was no AMR) for whom resistance can be said to have caused their death.
- Counterfactual: resistant infections replaced by susceptible infection

AMR associated deaths

- Most inclusive estimate of AMR burden
- Associated deaths measures people with a drug-resistant infection that contributed to their death. The infection was implicated in their death, but resistance may or may not have been a factor
- Counterfactual: resistant infections replaced by no infection

Data: 471 million individual records or isolates covering 7,585 study-location-years from literature, GBD partners, national surveillance systems, individual institutes, and industry

Global Burden of AMR Study

Source type	Number	Sample size	Sample	Estimation step										
	or study- location- years		size units	1: sepsis	2: infectious syndrome	3: case- fatality ratio	4: pathogen distribution	5: antibiotic use	6: prevalence of resistance	7: resistance profiles	8: relative risk of death	9: relative length of stay		
Multiple cause of death	2980	120871372	Deaths											
Hospital discharge	391	192 533 415	Discharges											
Microbial or laboratory data with outcome	1102	3060802	Isolates											
Microbial or laboratory data without outcome	2302	145067113	Isolates											
Literature studies	607	701356	Cases, isolates, or pathogen– drug susceptibility tests											
Single drug resistance profiles	158	8648390	Pathogen– drug susceptibility tests											
Pharmaceutical sales	1536	1536	Study- country- years											
Antibiotic use among children younger than 5 years with reported illness	203	151 455	Households surveyed											
Mortality surveillance (minimally invasive tissue sampling from Child Health and Mortality Prevention Surveillance)	7	870	Deaths											
Linkage (mortality only)	38	264010	Deaths											
Grand total	9324	471300319												

Estimation steps 1 & 2: deaths in which infection played a role by infectious syndrome

- **Data**: Multiple Causes of Death (121 million deaths, 5.54 million death hospital discharges, 264,000 MCoD from 10 countries, 870 deaths from Child Health and Mortality Prevention Surveillance sites in 6 countries)
- Estimate fraction of infection-related deaths (sepsis cause/pathway to death) in GBD cause-specific mortality estimates
 - Communicable; Maternal; Neonatal; Nutritional; Non-Communicable; Injury
- Subdivide sepsis deaths for each GBD category into 12 infectious syndromes using logistic regression
 - Infections of bones, joints, and related organs; Bloodstream infections; Endocarditis and other cardiac infections; Meningitis and other bacterial CNS infections; Peritoneal and intra-abdominal infections; Lower respiratory infections and all related infections in the thorax; Bacterial infections of the skin and subcutaneous systems; Typhoid fever, paratyphoid fever, and invasive non-typhoidal Salmonella spp.; Urinary tract infections and pyelonephritis.

Estimation steps 3 & 4: pathogen distribution for deaths and incident cases

- Estimate pathogen-specific CFRs by location and syndrome (Healthcare Access and Quality Index covariate) with Bayesian meta-regression
- **Calculate implied incidence per pathogen** by mapping CFR estimates onto pathogen-specific death data

• Estimate the pathogen distribution per infectious syndrome using multinomial estimation (trimmed constrained mixed effort model & network analysis)
Estimation steps 5-7: prevalence of AMR per pathogen

• **Data:** Microbiological data from 52.8 million bacterial using CLSI standards (largely high-income countries and tertiary referrals centers)

- Estimate proportion resistant for 88 pathogen-antibiotic combinations (drop
 - 88 combinations selected based on clinical relevance and minimum data availability
- Estimate the prevalence of resistance in each dyad by location with two-stage spatiotemporal modelling
- Estimate AMC by location (correlation between AMC and AMR)
- Estimate resistance co-occurrence (multidrug resistance)

Estimation steps 8 & 9: Relative risk of death resistant vs sensitive infections

• **Data**: 511,870 patients with death and AMR data; 455,909 with length of stay

- Estimate relative risk of death for each dyad R vs S assumed the relative risk was the same for every syndrome, location, and age group
- Estimate non-fatal excess risk using relative increase in length of stay per dyad R vs S
- Estimate population-attributable fraction (PAF) for each resistance profile with resistance to at least one drug proportional reduction in deaths or years lived with disability (YLDs) that would occur if all infections with the resistance profile of interest were instead susceptible (prevalence * relative risk / normalised over profiles)

Estimation Step 10: Putting it all together

AMR attributable burden per pathogen-antibiotic combination:

- Years of Life Lost (YLL): Deaths for each GBD category * Proportion sepsis-related * Proportion attributable to each syndrome * Proportion of syndrome deaths attributable to each pathogen * Mortality PAF for each resistance profile.
- Years Living w/ Disability (YLDs): syndrome incidence * Proportion of syndrome cases attributable to each pathogen * YLDs per incident case * non-fatal PAF
- Disability-Adjusted Life Years (DALYs) = YLLs + YLDs

AMR associated burden per pathogen-antibiotic combination:

- YLLs: Same calculation but using prevalence of resistance in deaths instead of PAF
- YLDs: Syndrome incidence * Proportion of infectious incident cases per pathogen * Prevalence of resistance * YLDs per incident case per syndrome

Data very sparse

- Highest burden regions have least data
- Sepsis (life-threatening organ dysfunction due to a dysregulated host response to infection) not only route to infection-related death (although probably majority)
- Big inferences drawn from very limited/biased data (especially towards tertiary care)
- Data for sepsis and infectious syndrome from only 16 high-income countries

Region	1. Sepsis and Infectious Syndrome Models*	Fraction of countries represente d in 1.	2. Case Fatality Rate	Fraction of countries represente d in 2.	3. Pathogen Distribution	Fraction of countries represente d in 3.	4. Fraction of Resistance**	Fraction of countries represente d in 4.	5. Relative Risk	Fraction of countries represente d in 5.
Andean Latin America	0	0/3	1,784	2/3	12,010	2/3	538,644	3/3	4,338	2/3
Australasia	320,909	1/2	94,818	1/2	6,294,677	2/2	4,653,832	2/2	5,211	2/2
Caribbean	0	0/19	2,858	5/19	6,225	5/19	68,078	10/19	529	1/19
Central Asia	0	0/9	43,852	2/9	2,785	1/9	304,341	9/9	6,065	1/9
Central Europe	0	0/13	371,112	10/13	627,844	11/13	3,148,864	13/13	397,885	10/13
Central Latin America	8,130,000	2/9	3,932,001	9/9	11,041,020	8/9	829,080	9/9	20,210	319
Central Sub-Saharan Africa	0	0/6	0	0/6	770	2/6	40243	6/6	0	0/6
East Asia	1,169,509	1/3	303,443	210	231,322	2/ 3	2,501,550	3/3	100,900	213
Eastern Europe	0	0/7	118,754	4/7	64,212	5/7	968,565	7/7	102,904	4/7
Eastern Sub-Saharan Africa	292	3/15	6,388	4/15	68,791	9/15	474,280	14/15	3,436	2/15
High-income Asia Pacific	0	0/4	135,907	3/4	99,042	3/4	118,909,332	4/4	7,577	3/4
High-income North America	84,520,574	2/3	7,184,424	3/3	7,255,147	2/3	32,205,001	3/3	14,071,025	2/3
North Africa and Middle		1								
East	0	0/21	209,479	13/21	53,833	16/21	531,120	21/21	90,079	10/21
Oceania	0	0/18	0	0/18	20	1/18	4,297	12/18	0	0/18
South Asia	54	1/5	77,811	4/5	51,810	4/5	1,413,840	5/5	97,131	4/5
Southeast Asia	0	0/13	195,087	9/13	91,259	8/13	3,128,014	12/13	172,947	8/13
Southern Latin America	0	0/3	200,665	3/3	73,512	2/3	740,385	3/3	5,000	1/3
Southern Sub-Saharan Africa	4,696,789	1/6	80,717	2/6	4,699,304	2/6	910,509	6/6	1,051	1/6
Tropical Latin America	17,224,511	1/2	3,988,611	1/2	20,956,932	2/2	286,450	2/2	6,443	1/2
Western Europe	10,599,906	2/24	94,506,554	20/24	105,183,184	21/24	18,909,732	21/24	932,016	21/24
Western Sub-Saharan Africa	83	2/19	26,985	9/19	21,896	10/19	369,482	18/19	14,880	2/19

What does this surveillance tell us?

AMR small but notable subset of infection-related deaths

Composition of global infection-related deaths

Considerable and Growing AMR Burden Globally

Data from: Naghavi, Mohsen, et al. "Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050." The Lancet 404.10459 (2024): 1199-1226.

AMR Burden is unequally distributed globally

Burden of AMR higher in some organisms

DALYs both associated with and attributable to bacterial antimicrobial resistance by pathogen All syndromes, Global, All Ages, Both sexes, 2021

Burden of AMR higher in some drug-bug pairs

Deaths associated with bacterial antimicrobial resistance by pathogen-drug combination (i) Global, All Ages, Both sexes, 2021																		
	Project	see to one of antipolics	bycosides set	Bononal Bononal Basannibilors Basan Basan	am Bata ors	enems Fuoro	alinolones Fourth	eneration osportins Third se	netation popolins Aminor	enclin Exercisi	Redrukte srcein Hacrol	bes Method	in withdrig	A Posterior of the start of the	onella pencil	in rimetro	Ann Astore	Noin Besterant
All pathogens	4.7M	1.3M	750k	1.4M	1.3M	2.7M	740k	1.7M	790k	8k	1.2M	550k	110k	20k	300k	1.8M	89k	7.8M
Acinetobacter baumannii	430k	310k	370k	370k	360k	360k	380k	380k										
Citrobacter spp.	50k	12k	25k		15k	28k	17k	25k										
Enterobacter spp.	110k	41k	68k		41k	64k	69k									62k		
Enterococcus faecalis	86k					73k											8.1k	
Enterococcus faecium	110k					110k											45k	
Escherichia coli	750k	240k		430k	120k	500k		400k	680k							500k		
Haemophilus influenzae	47k							13k	38k									
Klebsiella pneumoniae	570k	390k		450k	220k	430k		410k								430k		
Morganella spp.	43k					39k	12k	13k										
Mycobacterium tuberculosis	120k									8k			110k					
Proteus spp.	92k	37k				54k		26k	75k							57k		
Pseudomonas aeruginosa	410k	180k	250k		260k	260k	230k	210k										
Non-typhoidal Salmonella	19k					19k												
Salmonella enterica serovar Paratyphi	12k					12k								1.3k				
Salmonella enterica serovar Typhi	56k					59k								18k				
Serratia spp.	79k	41k	36k		21k	41k	40k	35k										
Shigella spp.	38k					38k												
Staphylococcus aureus	780k					420k					550k	550k				170k	37k	
Group A Streptococcus	52k										52k							
Group B Streptococcus	73k					31k					58k				7.9k			
Streptococcus pneumoniae	780k			190k	260k	140k		210k			520k				300k	550k		
														_				
	0. 734 414 734 2004							3804					550k					
												220N 2						

Summary

1. Antimicrobials

- Selective action, favourable PK/PD
- Antivirals/fungals/parasitics hard to develop due to overlap between host and microbe
- Antibiotics have many targets e.g., cell wall (beta-lactams), protein synthesis (macrolides & tetracyclines), and transcription (quinolones)
- Antibiotic organised into mechanistic families (or other properties/usage groups)
- Antibiotic usage driven by broad-spectrum penicillins in human and tetracyclines in animals

2. Antimicrobial Resistance

- Antibiotic Susceptibility Testing measures resistance measured but defining resistance is non-trivial and context dependent (i.e., ECOFFs vs Clinical Breakpoints)
- Many mechanisms of AMR (e.g., antibiotic inactivation, target modification, efflux/permeability)
- AMR is ancient and can evolves rapidly via mutation and LGT
- Surveillance of AMR is complicated and occurs at multiple geographic and technical scales
- High global burden of AMR but accurate measurement is difficult

- 3. Solutions to Antimicrobial Resistance
 - Improving Surveillance
 - New Antimicrobials
 - Alternatives to Antimicrobials
 - Antimicrobial Stewardship
 - Improved Rapid Diagnostics

What can we do about AMR?

National Action Plans

WHO Regional Office for Africa

National Action Plans

WHO Regional Office for Africa

- 1. Better understanding of AMR and AMR evolution: surveillance, research
- 2. New antimicrobials
- 3. Better use of existing antimicrobials:
 - Fewer infections: vaccines, sanitation, healthcare access, public health
 - More efficient: rapid diagnostics, resistance profiles

WHO Priority Pathogens 2024

Spearman rank correlation = 0.9

Kendall's W = 0.871

 PAPRIKA (Potentially All Pairwise RanKings of all possible Alternatives) is a robust decision-making approach for systematic evaluation and ranking of all conceivable pairwise alternatives to ensure comprehensive decision analysis. The method is a structured, thorough means of comparing and prioritizing diverse alternatives in making complex decisions.

Improve surveillance systems

AMR surveillance mismatches with burden

AMR surveillance mismatches with burden

AMR surveillance mismatches with burden

BCIs with AST per million population

applicable

Outbreaks easily missed - automated detection

Automating outbreak detection

SaTScan (cluster detection scan statistic). Find a (multi-dimensional) region where data is significantly denser than background.

- Run circles of various sizes across multidimensional count data:
- likelihood ~ (cases inside / expected inside) * (cases outside / expected outside)
- Monte carlo permutation test & multiple comparison correction

Baker, Meghan A., et al. "A trial of automated outbreak detection to reduce hospital pathogen spread." NEJM evidence 3.5 (2024): EVIDoa2300342.

- Cluster randomised trial in 82 community hospitals
- Messed up by pandemic but pre-pandemic vs baseline: significant ~64.1% reduction in additional cases

Demonstrating cost-effectiveness of genomic surveillance

PulseNet (human foodborne disease): CDC-led

- **Recall Model (Direct Effects)**: attack rates * recovered product = *E. coli* cases reduced by 2,819 and *Salmonella* by 16,994 = \$37 million cost averted
- Process Change (Indirect Effects): natural experiment from PulseNet adoption = 266,522 Salmonella, 9,489 E. coli, and 56 Listeria monocytogenes annually = \$507 million cost averted
- Program Cost: \$7.3 million

Scharff, Robert L., et al. "An economic evaluation of PulseNet: a network for foodborne disease surveillance." American journal of preventive medicine 50.5 (2016): S66-S73.

GenomeTrakr (food & environmental): FDA-CFSAN-led

- **Social Value Model** = [Profit from food production] [Public health burden] [implementation costs]
- Natural Experiment: genomic adoption vs state-specific outbreaks = per 1,000 genomes: 6.09 fewer observed illnesses; +0.01 more outbreaks with -1.07 illnesses = \$125-475 million cost averted per year
- **Program Cost**: \$21.3 million per year (broke even by year 2).

Labs Outside the U.S. Contributing to GenomeTrakr

U.S. GenomeTrakr Labs

Reducing need for antimicrobials

Vaccination

- More infections prevented by vaccination
 => less use of antimicrobials
 => less AMR
- Animals: very cost-benefit sensitive
- Humans: vaccine hesitancy

are mitigated by vaccination and

https://healthforanimals.org/animal-health-in-data/antimicrobial-resistance/animal-health-and-amr/

Infection Prevention & Control

Public Health & One Health interventions

Primary: Prevent infections **Secondary**: Detect and treat early infections **Tertiary**: Manage established infections Water and sanitation:

- Safe water systems prevent waterborne diseases (cholera, typhoid, hepatitis A)
- Sewage treatment removes pathogens before environmental release
- Hygiene promotion reduces fecal-oral transmission routes

Food safety systems:

- HACCP protocols (Hazard Analysis Critical Control Points) prevent contamination during production
- Cold chain maintenance prevents bacterial growth during transport/storage
- Restaurant inspections ensure safe food handling practices

Air Quality:

- Ventilation standards in buildings reduce airborne transmission (crucial for TB)
- Air filtration systems remove pathogens from indoor environments
- Occupational respiratory protection prevents workplace exposures

Healthier Population

Developing novel treatments

Antimicrobials are not that "profitable"

- **High development costs**: \$1-3 billion typical cost, 10-15 year timeline
- **High failure rates**: 95% of antibiotic candidates fail in clinical trials
- Limited market size: Antibiotics mostly needed in LMICs and used briefly compared to chronic disease medications
- Stewardship paradox: New antibiotics deliberately restricted to preserve effectiveness
- Generic competition: Patent expiration leads to very reduced revenue

Other Challenges

- **Target saturation**: Most "easy" bacterial targets already exploited
- AMR emergence: New drug may not last long!
- Clinical Trials: few eligible patients and non-inferiority requirements

Push and pull incentives for antimicrobial development

- CARB-X program: \$500 million commitment to early-stage antibiotic development
- Drugs for Neglected Diseases initiative (DNDi): Nonprofit drug development for tropical diseases
- **TB Alliance**: Focus on tuberculosis drug development
- GARDP: Nonprofit specifically for antibiotic development

Alternative treatments

- Phage therapy
- Antibiotic adjuvants:
 - Beta-lactamase inhibitors Clavulanic acid, tazobactam, vaborbactam, relebactam...
 Efflux pump inhibitors - verapamil
 - Antibody-antibiotic conjugates
- Antivirulence drugs

More effective use of existing antimicrobials: Antimicrobial Stewardship

Antibiotic Stewardship

Leadership & Accountability: Designated physician-pharmacist team with institutional authority to implement changes and allocate resources.

Drug Expertise: Clinical pharmacists with infectious disease specialization provide real-time guidance on antibiotic selection, dosing, and duration..

Action: Active interventions including prospective audit-and-feedback, formulary restrictions, preauthorization requirements, and automatic stop orders.

Tracking & Reporting: Monitor process metrics (antibiotic consumption, guideline adherence) and outcomes (infection rates, resistance patterns, length of stay).

Education: Ongoing training for all healthcare staff on appropriate antibiotic use, local resistance patterns, and program initiatives.

First Line, Second Line, Third Line Therapies

- Tiered treatment helps optimize outcomes while minimizing AMR and preserving potent antibiotics for serious infection.
- First-line antibiotics:
 - Initial, preferred treatments for most infections.
 - Generally effective, well-tolerated, have fewer side effects, and are less likely to promote antibiotic resistance.
 - Typically narrow-spectrum antibiotics that target the most common causative organisms.
 - UTI example: *Nitrofurantoin* or *trimethoprim-sulfamethoxazole* or **NOTHING** because effective against common UTI bacteria (*E. coli*), have good urinary tract penetration, and relatively few side effects

• Second-line antibiotics:

- Used when first-line treatments fail, aren't tolerated, or specific circumstances preclude them (like allergies, resistance patterns, or severe infections).
- May be broader-spectrum, have more side effects, or be reserved to prevent resistance development.
- UTI example: Fluoroquinolones (like ciprofloxacin) or beta-lactams (like amoxicillin-clavulanate)

• Third-line antibiotics:

- Typically reserved for serious infections, multidrug resistant organisms, or when first and second-line options have failed.
- Often broad-spectrum, more expensive, may have significant side effects, or are considered "last resort" medications to preserve their effectiveness.
- UTI example: Carbapenems or other broad-spectrum antibiotics
- Oral cheaper/easier than IV but potentially bigger impact on gut

Firstline: localised guidelines and antibiograms Days of Therapy (DoT) / 1000 patient days

Improved diagnostics

New genomic diagnostics enable targeted antibiotic

Interpreting AMR genotype data requires lots of expertise

Proteus mirabilis isolate:

- terD
- qacEdelta1
- qnrA
- tetJ
- dfrA14
- sul1
- catA
- catB2
- blaSHV-12
- blaVIM-1
- aac(6')-lb4
- mphA
- + 13 more AMR determinants

Interpreting AMR genotype data requires lots of expertise

Proteus mirabilis isolate:

Ad-Hoc Analysis & Expert Knowledge:

- Clinical
- Surveillance
- Infection Control
- Genomic
- Evolutionary
- Microbiological

• + 13 more AMR determinants

AMRrules: creating AMR genotype interpretive rules

AMRrules: creating AMR genotype interpretive rules

But more contextualisation of AMR genotypes needed

But more contextualisation of AMR genotypes needed

Evolving Threat Detector: Automating contextual analyses

Good news?

AMR not growing everywhere - success of AMR policies?

Summary

1. Antimicrobials

- Selective action, favourable PK/PD
- Antivirals/fungals/parasitics hard to develop due to overlap between host and microbe
- Antibiotics have many targets e.g., cell wall (beta-lactams), protein synthesis (macrolides & tetracyclines), and transcription (quinolones)
- Antibiotic organised into mechanistic families (or other properties/usage groups)
- Antibiotic usage driven by broad-spectrum penicillins in human and tetracyclines in animals

2. Antimicrobial Resistance

- Antibiotic Susceptibility Testing measures resistance measured but defining resistance is non-trivial and context dependent (i.e., ECOFFs vs Clinical Breakpoints)
- Many mechanisms of AMR (e.g., antibiotic inactivation, target modification, efflux/permeability)
- AMR is ancient and can evolves rapidly via mutation and LGT
- Surveillance of AMR is complicated and occurs at multiple geographic and technical scales
- High global burden of AMR but accurate measurement is difficult

- 3. Solutions to Antimicrobial Resistance
 - Surveillance needs improved and capacity needs increased in highest burden areas
 - Vaccines, IPAC, Public Health reduce infections and need for antimicrobials
 - Hard to incentivise development of new antimicrobials
 - Promising alternative treatments being developed like phage therapy, adjuvants, and anti-virulence
 - Antimicrobial Stewardship key to more effectively using existing antimicrobials
 - Rapid diagnostics enable targeted therapy but lots of work to do be done to make them effective