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Outcomes

- Explain how evolution and infectious disease epidemiology are connected
- Identify what additional information genomic data can provide
- Give example of how genomics can be used for diagnostics
- Explain how you can infer an evolutionary tree (phylogeny) 
- Provide examples of processes which determine the shape of a phylogeny
- Articulate the role of Bayesian models in genomic epidemiology
- List at least 3 ways in which a phylogeny can be used in epidemiology
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Agents of infectious diseases undergo evolution
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Pathogen evolution impacts treatment

10.1511/2014.106.42

Clinical
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Evolved ability 
to infect humans

Evolution drives cases: SARS-CoV-2 waves
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Evolution drives cases: SARS-CoV-2 waves

Evolved Increased 
infectivity

Evolved ability 
to infect humans

Evolved Increased 
Immune Evasion
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Evolved Increased 
infectivity

Evolved ability 
to infect humans

Evolution drives cases: SARS-CoV-2 waves
Evolved Increased 
Immune Evasion

Evolved Increased 
Immune Evasion,

Infectivity & 
Change of Tropism
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Original

Bivalent-2Bivalent-1

Evolution drives vaccine design/effectiveness
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How can we monitor evolution?
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Genomes are the substrate of evolution
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Genomes are the substrate of evolution

● DNA encodes RNA which encodes proteins
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Genomes are the substrate of evolution

● DNA encodes RNA which encodes proteins
● Viruses like SARS-CoV-2 skip DNA
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Genomes are the substrate of evolution

● Genomes are the complete collection of genetic instructions
● Sections of the genome with protein instructions are called genes
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Mutations provide the variation upon which evolution acts

● Genome copying is error-prone
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Mutations provide the variation upon which evolution acts

● Genome copying is error-prone
● Errors are called mutations
● Mutations can change protein sequence

Non-Synonymous Mutation
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Mutations provide the variation upon which evolution acts

● Genome copying is error-prone
● Errors are called mutations
● Mutations can change protein sequence  - but don’t always

Synonymous Mutation
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Mutations are a random walk across a fitness landscape

● Fitness = quantitative representation of individual reproductive success
● High Fitness = more descendants (larger proportion of circulating population)
● Low Fitness = fewer descendants (higher chance of dying out) 25

OVERSIMPLIFICATION - actual 
landscapes are dynamic/changing & 
fitness is hard to measure



So, how do we get genomes? 

26



Sequencing Pathogen Genomes
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Sequencing Pathogen Genomes
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Sequencing Pathogen Genomes
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How do we do this at scale?
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Automation of labour intensive steps

https://www.bd.com/scripts/europe/labautomation/productsdrilldown.asp?CatID=455&SubID=1836&siteID=20309&d=&s=
europe%2Flabautomation&sTitle=Lab+Automation&metaTitle=Total+Lab+Automation&dc=europe&dcTitle=Europe

Dr. Vermeiren 33
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Sequencing technology has rapidly changed and improved

https://www.pacb.com/blog/the-evolution-of-dna-sequencing-tools/
35

~1972-1977



Sanger Sequencing

https://www.sigmaaldrich.com/CA/en/technical-documents/protocol/genomics/sequencing/sanger-sequencing



Sequencing technology has rapidly changed and improved

https://www.pacb.com/blog/the-evolution-of-dna-sequencing-tools/
37

~1972-1977 ~2001-2004



Sequencing by Synthesis

Lu, Yuan, et al. "Next generation sequencing in aquatic models." Next Generation 
Sequencing-Advances, Applications and Challenges 1 (2016): 13.



Sequencing technology has rapidly changed and improved

https://www.pacb.com/blog/the-evolution-of-dna-sequencing-tools/
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Sequencing technology has rapidly changed and improved

https://www.pacb.com/blog/the-evolution-of-dna-sequencing-tools/
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PacBio Sequencing

https://www.pacb.com/wp-content/uploads/SMRT-Sequencing-Brochure-Delivering-highly-accurate-long-reads-to-drive-discovery-in-life-science.pdf



Nanopore Sequencing

Wang, Yunhao, et al. "Nanopore sequencing technology, bioinformatics and applications." Nature biotechnology 39.11 (2021): 1348-1365.



Sequencing technology has rapidly changed and improved

https://www.pacb.com/blog/the-evolution-of-dna-sequencing-tools/

Main Pathogenomics Platforms
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Mobile sequencing lab in a suitcase

https://crain-platform-genomeweb-prod.s3.amazonaws.com/s3fs-public/styles/1200x630/public/lab_in_a_suitcase.jpeg

See lecture reading: Loman & Gardy 2017 44



Reads are randomly(-ish) sampled from the DNA

www.langmead-lab.org/teaching-materials
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Reads are randomly(-ish) sampled from the DNA

www.langmead-lab.org/teaching-materials

 ~1,000,000 nt 
- 

~10,000,000 nt



Reads are randomly(-ish) sampled from the DNA

www.langmead-lab.org/teaching-materials

Assembly Algorithms
(exploit overlaps to 
stitch together reads) 

 ~1,000,000 nt 
- 

~10,000,000 nt?



Got a genome, now what?
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Genomic Diagnostics: What is the pathogen?

- Compare to genomes in database from 
known organisms

- Average Nucleotide Identity (ANI) is an 
example of a similarity metric

- Identify pathogen as closest reference 
genome taxa

- Use identity to drive treatment
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Genomic Diagnostics: What is the pathogen?

- Compare to genomes in database from 
known organisms

- Average Nucleotide Identity (ANI) is an 
example of a similarity metric

- Identify pathogen as closest reference 
genome taxa

- Use identity to drive treatment (if x then 
treat by y)

- Typing for outbreak investigation linkage
55



Genomic Diagnostics: What drugs will work?

10.1038/s41576-019-0108-4
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Genomic Diagnostics: What drugs will work?

- Detect NDM-1 carbapenemase gene
- Pathogen protein that destroys many antibiotics (beta-lactams)
- => Treat with alternative class of antibiotics (e.g., colistin) 

- Hours vs weeks for some pathogens (TB)

10.1038/s41576-019-0108-4
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Genomic Diagnostics: identifying mobile genetic elements
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OK, but what else can we do with genomes?
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Detection mutations relative to reference
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Detection mutations relative to reference

61



Detection mutations relative to reference
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Compare mutations across patients
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Compare mutations across patients
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Using pattern of mutations to infer relationships
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Using pattern of mutations to infer relationships
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Using pattern of mutations to infer relationships
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Using pattern of mutations to infer relationships
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Using pattern of mutations to infer relationships

Phylogenetic Tree
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What does this tree actually represent?
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Sampling & partially reconstructing underlying epidemic process

https://github.com/trvrb/phylodynamics-lecture
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https://github.com/trvrb/phylodynamics-lecture

Sampling & partially reconstructing underlying epidemic process
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https://github.com/trvrb/phylodynamics-lecture

Sampling & partially reconstructing underlying epidemic process
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https://github.com/trvrb/phylodynamics-lecture

Sampling & partially reconstructing underlying epidemic process
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What determines underlying process?
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Many forces shaping underlying process

https://github.com/trvrb/phylodynamics-lecture

?
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Many forces shaping underlying process

https://github.com/trvrb/phylodynamics-lecture

Within-host Evolution

Between-host Evolution

Host Immune Response

Host Migration

Infectivity

Virulence

Vaccination 

Non-Pharmaceutical 
Interventions 

Mutation Rate

Generation Time

Immune Memory

Population Structure 82



Many forces shaping underlying process

https://github.com/trvrb/phylodynamics-lecture

Within-host Evolution

Host Immune Response

Host Migration

Infectivity

Virulence

Vaccination 

Non-Pharmaceutical 
Interventions 

Mutation Rate

Generation Time

Immune Memory

Population Structure

Between-host Evolution
Underlying Process = Ecological + Epidemiological 

+ Evolutionary 
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Let’s start with the “simple” reconstruction of 
the transmission network



https://github.com/trvrb/phylodynamics-lecture

Complicated sampling of a (within-host) population of 
a (between host) population
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Complicated sampling of a (within-host) population of a 
(between host) population

https://www.science.org/doi/10.1126/science.abg0821



Same tree can be consistent with different scenarios

10.1371/journal.pcbi.1004613



Same tree can be consistent with different scenarios

10.1371/journal.pcbi.1004613

=> Probabilistic inference!



How can we can model phylodynamic 
processes probabilistically?

89



Bayesian inference is a key tool in genomic epidemiology

https://github.com/Taming-the-BEAST/Taming-the-BEAST-2021-Online-Lectures/blob/master/Day1_First_Steps_-_Ceci_Valenzuela.pdf 90
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Bayesian inference is a key tool in genomic epidemiology

Tree

Epidemiological/population model

Evolution model

Temporal mutation model

https://github.com/Taming-the-BEAST/Taming-the-BEAST-2021-Online-Lectures/blob/master/Day1_First_Steps_-_Ceci_Valenzuela.pdf 92



Bayesian inference is a key tool in genomic epidemiology

Tree

Epidemiological/population model

Evolution model

Temporal mutation model

+ Anything else (spatial, immune, etc)
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Bayesian inference is a key tool in genomic epidemiology

Tree

Epidemiological/population model

Evolution model

Temporal mutation model
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Bayesian inference is a key tool in phylodynamics

Tree

Epidemiological model e.g., SIR, SIS, SIRS etc

Evolution model

Temporal mutation model

+ Anything else (spatial, immune, etc)

https://github.com/Taming-the-BEAST/Taming-the-BEAST-2021-Online-Lectures/blob/master/Day1_First_Steps_-_Ceci_Valenzuela.pdf

Likelihood Prior

Marginal Probability



Markov Chain Monte Carlo (MCMC) Sample

97

Intractable!

* * *



Markov Chain Monte Carlo (MCMC) Sample
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* * *

Posterior Odds



Markov Chain Monte Carlo (MCMC) Sample
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* * *

Likelihood Ratio Prior OddsPosterior Odds



Markov Chain Monte Carlo (MCMC) Sample
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Live Demo - https://delphy.fathom.info/ 
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What kind of epidemic process parameters 
do we want to infer?

102



Compartmental models are used to model infections

https://covid19.uclaml.org/model.html



Compartmental models are used to model infections

https://covid19.uclaml.org/model.html

Disclaimer: many more complex models!



Compartmental models are used to model infections

https://covid19.uclaml.org/model.html



Compartmental models are used to model infections

https://covid19.uclaml.org/model.html Assuming N = fixed pop



Can calculate P(observed case counts | β=?,γ=?) with cases

https://health-infobase.canada.ca/covid-19/current-situation.html

Same idea as Maximum 
likelihood Phylogenetics 
(just without any trees)



So, if we can this with case why do we bother 
using phylodynamics and genomic data?

https://github.com/trvrb/phylodynamics-lecture



Genomics can be used to infer unobserved events

https://github.com/Taming-the-BEAST/Taming-the-BEAST-2021-Online-Lectures/raw/master/Day2_Phylodynamics_-_Tanja_Stadler.pdf



Genomics can be used to infer unobserved events
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Genomics can be used to infer unobserved events

https://github.com/Taming-the-BEAST/Taming-the-BEAST-2021-Online-Lectures/raw/master/Day2_Phylodynamics_-_Tanja_Stadler.pdf



Cases don’t tell you (much) about pathogen evolution

https://www.sciencedirect.com/science/article/pii/S1755436514000723



Let’s look at some specific use-cases
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Define lineages (groups) of pathogens
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Define lineages (groups) of pathogens
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Early warning modelling lineage relative growth advantage

https://cov-spectrum.org/explore/Switzerland/Surveillance/Past6M/variants?nextcladePangoLineage=xbb*&
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Identify clinically relevant mutations
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Identify clinically relevant mutations
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Identify clinically relevant mutations
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Identify clinically relevant mutations
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Identify clinically relevant mutations

Convergence(?)
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Identify clinically relevant mutations

Convergence(?)

 
 

 

See part 2 for more details of 
testing these associations! 
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Prioritise characterisation of mutations: S:E484K 

https://www.thelancet.com/journals/lanmic/article/PIIS2666-5247(21)00068-9
124



Inferring internal ancestral states from observed tips

https://github.com/trvrb/gs541-phylodynamics

Transition Probabilities/Rates
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Inferring internal ancestral states from observed tips

https://github.com/trvrb/gs541-phylodynamics

Transition Probabilities/Rates
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Trace sources of outbreaks
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Trace sources of outbreaks

Single group 
suggests single 

source
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Trace sources of outbreaks
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Trace sources of outbreaks

130



Trace sources of outbreaks

Multiple groups 
suggest multiple 

sources
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Finding Deer-to-Human transmission

Supporting Circumstantial Evidence:

● Spatially congruent
● Temporally congruent
● Plausible Epidemiological Link
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Convert genomic distance to time
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Convert genomic distance to time

(2021-10-02)

(2022-09-10)

(2022-06-15)
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Mutation rates from Root to Tip Regression
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May-July 2021

May-Aug 2020

~1 Year

Mutations rates let us time of unobserved events
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Tree shape tells us about population size

https://github.com/trvrb/gs541-phylodynamics
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Tree shape tells us about population size

https://github.com/trvrb/gs541-phylodynamics
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Tree shape tells us about population size

https://github.com/trvrb/gs541-phylodynamics
139



Inferring epidemiological parameters from shape

Low R0
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Inferring epidemiological parameters from shape

High R0

141



What about evolutionary forces like 
selection?



dN/dS is one way to detect selection

dN = non-synonymous mutations (normalised)

dS = synonymous mutations (normalised)

dN/dS > 1 : adaptive/positive selection 

dN/dS ~ 1 : drift/neutral selection

dN/dS < 1: purifying/negative selection

Challenges: 

- Mutation rates vary (across and between genomes)
- Genomes are related (mutations are non-independent) 
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Non-independence of events in related genomes



Non-independence of events in related genomes



Non-independence of events in related genomes



Non-independence of events in related genomes



Non-independence of events in related genomes

- Phylogeny captures dependency 
structure of genomic data



Non-independence of events in related genomes

- Phylogeny captures dependency 
structure of genomic data

- Informs error term for models 
(e.g., regression)

- adaptive Branch-Site Random 
Effects Likelihood: Is there a 
significant proportion of sites within 
selected branches with dN/dS > 1

Smith, MD et al. "Less is more: an adaptive branch-site random effects 
model for efficient detection of episodic diversifying selection." Mol. 
Biol. Evol. 32, 1342–1353 (2015).

https://doi.org/10.1093/molbev/msv022
https://doi.org/10.1093/molbev/msv022
https://doi.org/10.1093/molbev/msv022


Testing for remdesevir resistance selection

Nirmalarajah, Kuganya, et al. "Use of whole genome sequencing to identify low‐frequency mutations in SARS‐CoV‐2 patients treated with remdesivir." Influenza and Other Respiratory Viruses 17.9 
(2023): e13179.



Many other analyses are possible

Grenfell, B. T. (2004). Unifying the Epidemiological and Evolutionary Dynamics of Pathogens. Science, 303(5656), 327–332. doi:10.1126/science.1090727 

Massive area:
- Birth-death models
- Coalescent models
- Bayesian skyline/skygrid 

models
- Spatiotemporal models 

(phylogeography)
- Recombination
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Summary

- Pathogen evolution and epidemiology are intrinsically linked
- Genomics provides insights into evolution and unobserved events
- Comparison of DNA sequences to databases can be used for diagnostics
- Pattern of mutations across genomes can be used to generate phylogenies
- Phylogenies are structured by sampling, ecology, evolution, and epidemiology
- Probabilistic Bayesian phylogenetic inference is a key tool
- Can use these approaches to do many things including:

- Identify lineages
- Monitor evolution
- Infer timing/location of outbreaks/events
- Determine epidemiological parameters
- Characterise strength and direction of selection
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