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Outcomes

- Explain how evolution and infectious disease epidemiology are connected
- ldentify what additional information genomic data can provide

- Give example of how genomics can be used for diagnostics

- Explain how you can infer an evolutionary tree (phylogeny)

- Provide examples of processes which determine the shape of a phylogeny
- Articulate the role of Bayesian models in genomic epidemiology

- List at least 3 ways in which a phylogeny can be used in epidemiology



Agents of infectious diseases undergo evolution
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Pathogen evolution impacts treatment
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Evolution drives cases: SARS-CoV-2 waves
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Evolution drives cases: SARS-CoV-2 waves
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Evolution drives cases: SARS-CoV-2 waves
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Evolution drives vaccine design/effectiveness

Canadian SARS-CoV-2 Genomes
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How can we monitor evolution?
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Genomes are the substrate of evolution

DNA
Deoxyribonucleic acid
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Genomes are the substrate of evolution

Cytosine -]
Guanine [@]
_—
Adenine Al
uracil (@]

RNA
Ribonucleic acid

e DNA encodes RNA which encodes proteins
e \Viruses like SARS-CoV-2 skip DNA

PROTEIN
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Genomes are the substrate of evolution

e Genomes are the complete collection of genetic instructions

SARS-CoV2
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Genomes are the substrate of evolution

e Genomes are the complete collection of genetic instructions
e Sections of the genome with protein instructions are called genes (E]

SARS-CoV2

0 3,000 6,000 9,000 12,000 15,000 18,000 21,000 24,000 27,000
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Mutations provide the variation upon which evolution acts
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Mutations provide the variation upon which evolution acts

DNA RNA
Deoxyribonucleic acid Ribonucleic acid

e (Genome copying is error-prone
e Errors are called mutations
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Mutations provide the variation upon which evolution acts
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Mutations provide the variation upon which evolution acts

Cytosine .
Cytosine [ Synonymous Mutation
Guanine .
Guanine .
Adenine @ 3 _—
Adenine @
Thymine .
Uracil .
DNA RNA PROTEIN

Deoxyribonucleic acid Ribonucleic acid

e (Genome copying is error-prone
e Errors are called mutations

e Mutations can change protein sequence - but don’t always .



Mutations are a random walk across a fithess landscape

OVERSIMPLIFICATION - actual
9 landscapes are dynamic/changing &
fitness is hard to measure

Fitness

e Fitness = quantitative representation of individual reproductive success
e High Fitness = more descendants (larger proportion of circulating population)
e Low Fitness = fewer descendants (higher chance of dying out) -



S0, how do we get genomes?



Sequencing Pathogen Genomes

Take Patient Sample

== Pathogen
== Host DNA
== Other Genomes
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Sequencing Pathogen Genomes
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Sequencing Pathogen Genomes

Take Patient Sample

f

== Pathogen
== Host DNA
== Other Genomes

CuIture and Isolate Microbe
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Extract Metagenomic DNA
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Sequencing Pathogen Genomes

Take Patient Sample

' 4

== Pathogen
== Host DNA
== Other Genomes

Culture and Isolate Microbe

Extract Genomic DNA

Extract Genome(s)

AGCTACTACTAGACGCGCATTCGCATA

I
AGCTA ATTTA ATTTA
JE— BN pe—

Assemble Overlapping Fragments

Ariadin
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How do we do this at scale?



Automation of labour intensive steps

AUTOMATED
INCUBATION
& IMAGING ﬁ\\
FULLY AUTOMATED - RN !
PROCESSING: =
liquid specimens =
AUTOMATIC PLATE S
BARCODIN e
L4

il

oy

;

WORKBENCH
& READING

SEMI-AUTOMATED
PROCESSING:
non liquid specimens

MEDIA PLATE {i T
LOADING | T

https://www.bd.com/scripts/europe/labautomation/productsdrilldown.asp?CatID=455&SublD=1836&site| D=20309&d=&s=
europe%2Flabautomation&sTitle=Lab+Automation&metaTitle=Total+Lab+Automation&dc=europe&dcTitle=Europe
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Automation of labour intensive steps

O Lapyg

MEDIA PLATE
LOADING

https://www.bd.com/scripts/europe/labautomation/productsdrilldown.asp?CatID=455&SublD=1836&site| D=20309&d=&s=
europe%2Flabautomation&sTitle=Lab+Automation&metaTitle=Total+Lab+Automation&dc=europe&dcTitle=Europe
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Sequencing technology has rapidly changed and improved
~1972-1977

First generation

@ E

Sanger sequencing
Maxam and Gilbert
Sanger chain termination

Infer nucleotide identity using dNTPs,
then visualize with electrophoresis

500-1,000 bp fragments

https://www.pacb.com/blog/the-evolution-ot-dna-sequencing-tools/
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Sanger Sequencing

1 PCR with fluorescent, 2 Size separation by capillary 3 Laser excitation & detection

chain-terminating ddNTPs gel electrophoresis by sequencing machine
3/

[ Large fragments g G
—A A A
¢ c c
=T i T
& rG1 G . C G G
—A T:GGQ G A A

a A
—A + ,,, A c -} A A
— ,cgf‘,me G G
—c gree’ c c
T Mixture of dNTPs & Small fragments T T
E fluorescently- labelled G G
=L ddNTPs T T
5 Fluorescently- ipli
y-labelled Laser beam Photomultiplier
original oligonucleotides Output chromatogram

DNA sequence,
PCR amplified &
denatured

https.//www.sigmaaldrich.com/CA/en/technical-documents/protocol/genomics/sequencing/sanger-sequencing



Sequencing technology has rapidly changed and improved
~1972-1977 ~2001-2004

A

First generation Second generation
(next generation sequencing)

A
e B D = i
- - Sl =R
Sanger sequencing 454, Solexa,
Maxam and Gilbert lon Torrent,
Sanger chain termination lllumina
Infer nucleotide identity using dNTPs, High throughput from the
then visualize with electrophoresis parallelization of sequencing reactions
500-1,000 bp fragments ~50-500 bp fragments

https://www.pacb.com/blog/the-evolution-of-dna-sequencing-tools/
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Sequencing by Synthesis

\UASIIRPEE

Fragments Add adaptors Attach to flowcell

Bind to primer

Cluster formation

Sequencing Signal scanning

Lu, Yuan, et al. "Next generation sequencing in aquatic models." Next Generation
Sequencing-Advances, Applications and Challenges 1 (2016): 13.



Sequencing technology has rapidly changed and improved
~1972-1977 ~2001-2004

A

First generation Second generation
(next generation sequencing)

A

e B D = i
- - Sl =R
Sanger sequencing 454, Solexa,
Maxam and Gilbert lon Torrent,
Sanger chain termination lllumina
Infer nucleotide identity using dNTPs, High throughput from the
then visualize with electrophoresis parallelization of sequencing reactions
500-1,000 bp fragments ~50-500 bp fragments

Short-read sequencing

https://www.pacb.com/blog/the-evolution-of-dna-sequencing-tools/



Sequencing technology has rapidly changed and improved

~1972-1977 ~2001-2004 ~2011-2015

First generation Second generation Third generation

(next generation sequencing)

== lE &=

Sanger sequencing 454, Solexa, PacBio
Maxam and Gilbert lon Torrent, Oxford Nanopore
Sanger chain termination lllumina
Infer nucleotide identity using dNTPs, High throughput from the Sequence native DNA in real time
then visualize with electrophoresis parallelization of sequencing reactions with single-molecule resolution
500-1,000 bp fragments ~50-500 bp fragments | | Tens of kb fragments, on average
Short-read sequencing Long-read sequencing

https://www.pacb.com/blog/the-evolution-of-dna-sequencing-tools/
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PacBio Sequencing

As anchored
polymerases

A single molecule of DNA is incorporate
immobilized in each ZMW labeled bases,
|- light is emitted
A s
% (] ; : : |
SMRT Cells contain millions of % ' E ; E
zero-mode waveguides (ZMWs) .\b& ! \ H
A

g : i i i
§ ' i ' i
S ' i i i
> ' | ' |

& ! ! ' ! Directly detect

f > > e > ! DNA modiﬁcatic?ns
q& ' i ' ! during sequencing

‘ ]
* £ i |
SMRTbell® templates enable repeated g A Cc T 3 |
sequencing of circular template with § ‘ |
real-time detection of base incorporation \ ) » g 1
- o 1 I

\‘) Time

Nucleotide incorporation kinetics
are measured in real time

https://www.pach.com/wp-content/uploads/SMRT-Sequencing-Brochure-Delivering-highly-accurate-long-reads-to-drive-discovery-in-life-science.pdf



Nanopore Sequencing

dsDNA

Motor protein
cis Nanopore
Membrane

Current (pA)

;

Rtk S
v <+
Ions <<<+0O

2
pl

trans

TGAAAS'CGCTAACA AA TGAT
T

0 10 20 30 40
Time (ms)

Array of microscaffolds

Sensor chip

MinlON

Wang, Yunhao, et al. "Nanopore sequencing technology, bioinformatics and applications." Nature biotechnology 39.11 (2021): 1348-1365.



Sequencing technology has rapidly changed and improved

~1972-1977 ~2001-2004 ~2011-2015

First generation Second generation Third generation

(next generation sequencing)

@ E &2

Sanger sequencing 454, Solexa, PacBio
Maxam and Gilbert lon Torrent, Oxford Nanopore |

Sanger chain termination [ lllumina |
Infer nucleotide identity using dNTPs, High throughput from the equence native DNA in real time
then visualize with electrophoresis parallelization of sequencing reactions with single-molecule resolution
500-1,000 bp fragments ~50-500 bl Main Pathogenomics Platforms tn average [

Short-read sequencing Long-read sequencing

https://www.pacb.com/blog/the-evolution-of-dna-sequencing-tools/
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Mobile sequencing lab in a suitcase

4

https://crain-platform-genomeweb-prod.s3.amazonaws.com/s3fs-public/styles/1200x630/public/lab_in_a_suitcase.jpeg

See lecture reading: Loman & Gardy 2017
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Reads are randomly(-ish) sampled from the DNA

GTATGCACGCGATAG TATGTCGCAGTATCT CACCCTATGTCGCAG GAGACGCTGGAGCCG

Reads

Your genome

CGTCTGGGGGGTATGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTCGCAGTATCTGTCTTTGATTCCTG

www.langmead-lab.org/teaching-materials
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Reads

Your genome
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Reads are randomly(-ish) sampled from the DNA

GTATGCACGCGATAG TATGTCGCAGTATCT CACCCTATGTCGCAG GAGACGCTGGAGCCG
TAGCATTGCGAGACG GGTATGCACGCGATA TGGAGCCGGAGCACC CGCTGGAGCCGGAGC
TGTCTTTGATTCCTG CGCGATAGCATTGCG GCATTGCGAGACGCT CCTATGTCGCAGTAT

Reads

Your genome

CGTCTGGGGGGTATGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTCGCAGTATCTGTCTTTGATTCCTG

www.langmead-lab.org/teaching-materials



Reads are randomly(-ish) sampled from the DNA

Reads

GTATGCACGCGATAG
TAGCATTGCGAGACG
TGTCTTTGATTCCTG
GACGCTGGAGCCGGA
TATCGCACCTACGTT
CACGGGAGCTCTCCA
GTATGCACGCGATAG
GCGAGACGCTGGAGC
CCTACGTTCAATATT
GACGCTGGAGCCGGA
TATCGCACCTACGTT
CACGGGAGCTCTCCA

TATGTCGCAGTATCT
GGTATGCACGCGATA
CGCGATAGCATTGCG
GCACCCTATGTCGCA
CAATATTCGATCATG
TGCATTTGGTATTTT
ACCTACGTTCAATAT
CTATCACCCTATTAA
GCACCTACGTTCAAT
GCACCCTATGTCGCA
CAATATTCGATCATG
TGCATTTGGTATTTT

CACCCTATGTCGCAG
TGGAGCCGGAGCACC
GCATTGCGAGACGCT
GTATCTGTCTTTGAT
GATCACAGGTCTATC
CGTCTGGGGGGTATG
TATTTATCGCACCTA
CTGTCTTTGATTCCT
GTCTGGGGGGTATGC
GTATCTGTCTTTGAT
GATCACAGGTCTATC
CGTCTGGGGGGTATG

GAGACGCTGGAGCCG
CGCTGGAGCCGGAGC
CCTATGTCGCAGTAT
CCTCATCCTATTATT
ACCCTATTAACCACT
CACGCGATAGCATTG
CCACTCACGGGAGCT
ACTCACGGGAGCTCT
AGCCGGAGCACCCTA
CCTCATCCTATTATT
ACCCTATTAACCACT
CACGCGATAGCATTG

Your genome

CGTCTGGGGGGTATGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTCGCAGTATCTGTCTTTGATTCCTG

www.langmead-lab.org/teaching-materials



Reads are randomly(-ish) sampled from the DNA

Reads

< 100 nt —p

~1,000,000 nt
Your genome

~10,000,000 nt

a
-

-
>

www.langmead-lab.org/teaching-materials



Reads are randomly(-ish) sampled from the DNA

Reads

<— 100 nt —p

Assembly Algorithms
(exploit overlaps to
stitch together reads)
~1,00Q, 0 nt
Your genome ?
~10,0004#00 nt

www.langmead-lab.org/teaching-materials



Got a genome, now what?
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Genomic Diagnostics: What is the pathogen?

Qs
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Genomic Diagnostics: What is the pathogen?

- Compare to genomes in database from
known organisms
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Genomic Diagnostics: What is the pathogen?

- Compare to genomes in database from
known organisms

- Average Nucleotide Identity (ANI) is an
example of a similarity metric

23%

ANI Eh( Percent Identity * Alignment length )

G1=+G2 lengths of BBH genes

97%

11%
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Genomic Diagnostics: What is the pathogen?

- Compare to genomes in database from
known organisms

- Average Nucleotide Identity (ANI) is an
example of a similarity metric

—>

23%

( Percent Identity * Alignment length )

>
AN = eh

G1=+G2 lengths of BBH genes

97%

- ldentify pathogen as closest reference
genome taxa
- Use identity to drive treatment (if x then

treat by y)
11%
- Typing for outbreak investigation linkage

55



Genomic Diagnostics: What drugs will work?

Assembled contigs

- and annotation
Reference database — —
(CARD, Resfinder or Resfams) -

1 BLAST or hmmscan i Gene finding

10.1038/s41576-019-0108-4
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Genomic Diagnostics: What drugs will work?

Assembled contigs =

@ BLAST or hmmscan \i Gene finding
and annotation

Reference database
(CARD, Resfinder or Resfams)

e

10.1038/s41576-019-0108-4

- Detect NDM-1 carbapenemase gene
- Pathogen protein that destroys many antibiotics (beta-lactams)
- => Treat with alternative class of antibiotics (e.g., colistin)

- Hours vs weeks for some pathogens (TB)

57



Genomic Diagnostics: identifying mobile genetic elements

A
Mobile AMR gene =

B
Tarsposon il 6 ) = )
Nested Transposon ,_‘_.’/'—\‘ | - - =

i D :
—— @~ (0%
Bacterial cell
Chromosome

Plasmid

58



OK, but what else can we do with genomes?
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Detection mutations relative to reference

GCUGUACUAGCA
Reference

Patient A 1 ——
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Detection mutations relative to reference

GCUGUACUAGCA
Reference
GCUGUAGAAGCA
Patient A *
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Detection mutations relative to reference

GCUGUACUAGCA
Reference
GCUGUAGAAGCA
Patient A
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Compare mutations across patients

Reference
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Compare mutations across patients

m m O O W >
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Compare mutations across patients

m m O O W >

65



Compare mutations across patients
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Compare mutations across patients

m m O O W >
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Compare mutations across patients

m m O O W >
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Using pattern of mutations to infer relationships
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Using pattern of mutations to infer relationships

m m O O @™ >

A
B
+g
E
F
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Using pattern of mutations to infer relationships

m m O O @™ >

A
B
C

mm
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Using pattern of mutations to infer relationships

m m O O @™ >

72



Using pattern of mutations to infer relationships

m m O O @™ >

73



Using pattern of mutations to infer relationships

Phylogenetic Tree
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What does this tree actually represent?



Sampling & partially reconstructing underlying epidemic process

Time

https://github.com/trvrb/phylodynamics-lecture
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Sampling & partially reconstructing underlying epidemic process

\ 4

Time

https://github.com/trvrb/phylodynamics-lecture
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Sampling & partially reconstructing underlying epidemic process

\ 4

Time

https://github.com/trvrb/phylodynamics-lecture
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Sampling & partially reconstructing underlying epidemic process

Y

Time

https://github.com/trvrb/phylodynamics-lecture
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What determines underlying process?



Many forces shaping underlying process

7] Tegote T &

Time

81
https://github.com/trvrb/phylodynamics-lecture



Many forces shaping underlying process

Virulence | )
| Non-Pharmaceutical

Interventions

| Host Immune Response |

|Within-host Evolution | {
| Infectivity |

| Between-host Evolution | T . | Mutation Rate |

| Host Migration | L ? ‘ | Generation Time |
‘ ? ! ‘—' : | Immune Memory |

>
>

| Vaccination |

Time )
| Population Structure | 82
https://github.com/trvrb/phylodynamics-lecture




Many forces shaping underlying process

Virulence
| Non-Pharmaceutical

Interventions

| Host Immune Response

|Within-host Evolution | {
| Infectivity |

1
| Betwe

Underlying Process = Ecological + Epldemlologlcal

+ Evolutionary
| Host Migration |

‘ ‘ | Sereren on Time |
. ? | ‘—n ‘ | | Immune Memory |
| Vaccination |

>
>

JRate I

Time )
| Population Structure | 83
https://github.com/trvrb/phylodynamics-lecture




Let’s start with the “simple” reconstruction of
the transmission network



Complicated sampling of a (within-host) population of
a (between host) population

4 W

Time

https://github.com/trvrb/phylodynamics-lecture
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Complicated sampling of a (within-host) population of a
(between host) population

. 3. The transmission

2 bottleneck is narrow,
:c,\/ = and most often
R o 22
only the majority
2. Minor variants

variant will transmit

B

1. Initial infection by a
largely homogeneous appear de novo
viral population within host

:c o o 6. Over time some variants
N disappear, others appear,
I others persist

4. More rarely
the transmitted 5. Or a mixed infection
variant is a minority is transmitted

90 ‘ Q>

@
3

L XX

https://www.science.org/doi/10.1126/science.abg0821



Same tree can be consistent with different scenarios

A

C

®—0®—0

B

10.1371/journal.pcbi.1004613



Same tree can be consistent with different scenarios

A

C

®—0®—0

B

®—00—0 ®
® /@ /0

\ ©\ ®\
© ©

10.1371/journal.pcbi.1004613

=> Probabilistic inference!




How can we can model phylodynamic
processes probabilistically?

89



Bayesian inference is a key tool in genomic epidemiology

ACAC...

TCAC...
DATA ACAG. ..

https://github.com/Taming-the-BEAST/Taming-the-BEAST-2021-Online-Lectures/blob/master/Day1_First _Steps - Ceci_Valenzuela.pdf
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Bayesian inference is a key tool in genomic epidemiology

ACAC...

—( DATA J TCAC. ..

ACAG. ..

—(Moper] = 00 g8 O

https://github.com/Taming-the-BEAST/Taming-the-BEAST-2021-Online-Lectures/blob/master/Day1_First _Steps - Ceci_Valenzuela.pdf
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Bayesian inference is a key tool in genomic epidemiology

_( D ACAC... Epidemiological/population model
| ATA J TCAC...

ACAG. .. Tree Evolution model

| / // Temporal mutation model
-Mooe) 0D 8

https://github.com/Taming-the-BEAST/Taming-the-BEAST-2021-Online-Lectures/blob/master/Day1_First _Steps - Ceci_Valenzuela.pdf 92



Bayesian inference is a key tool in genomic epidemiology

ACAC... Epidemiological/population model

! | TCAC. ..
\ DATA J ACAG. .. Tree

Evolution model
/ // Temporal mutation model

—Mopet] £ 0D 8 O

+ Anything else (spatial, immune, etc)

https://github.com/Taming-the-BEAST/Taming-the-BEAST-2021-Online-Lectures/blob/master/Day1_First _Steps - Ceci_Valenzuela.pdf 93



Bayesian inference is a key tool in genomic epidemiology

D ACAC... Epidemiological/population model
r— TCAC...
ATA ACAG. .. Tree

Evolution model
/ // Temporal mutation model

(Mooe) £ 00 B ®

+ Anything else (spatial, immune, etc)

ACAC...

P( ﬁ ;model | ;<)

https://github.com/Taming-the-BEAST/Taming-the-BEAST-2021-Online-Lectures/blob/master/Day1_First _Steps - Ceci_Valenzuela.pdf 94



Bayesian inference is a key tool in genomic epidemiology

Epidemiological/population model

—( DATA ] ?Eﬁg: ..

ACAG. .. Tree Evolution model

i / // Temporal mutation model
{mover) oD 58 ®

ACAC.

ACA P(lE= del) P del
P(E modellf\Eﬁé ) = - lE |EOAC:”)-) (ﬁ model)
TEAC.:. ; <

ACAG. ..

+ Anything else (spatial, immune, etc) |

https://github.com/Taming-the-BEAST/Taming-the-BEAST-2021-Online-Lectures/blob/master/Day1_First _Steps - Ceci_Valenzuela.pdf 95



Bayesian inference is a key tool in phylodynamics

D (\ ACAC... Epidemiological model e.g., SIR, SIS, SIRS etc
— ATA | TCAC...
ACAG. .. Tree Evolution model

- / / __ Temporal mutation model
{Mooe) 0 E ©

+ Anything else (spatial, immune, etc) |

Likelihood Prior
ACAC.
P(E modelITgﬁE ) = P(acc::: |L|q:: ,model) P(ﬁ ,model)
AR P (Tcac:?)
ACAG. ..

Marginal Probability

https://github.com/Taming-the-BEAST/Taming-the-BEAST-2021-Online-Lectures/blob/master/Day1_First _Steps - Ceci_Valenzuela.pdf



Markov Chain Monte Carlo (MCMC) Sample

ey PO model) P(fz model)
P((= ,model | 7)) =

ACAC...

P(Tcac’) | Intractable!

ACAG...




Markov Chain Monte Carlo (MCMC) Sample

ACAC... * *
£ acac... P(Ace | 5 ,model) P(E ,model)
P(ﬁ ;model XEQE:::) = ACAC. ..
P (o)
ACAC. .. P(fgﬁél E ,model) P(E ,model)
P(ﬁ ;model XEQE:::) = P(ACAC...)
TCAC...
ACAG...

Posterior Odds



Markov Chain Monte Carlo (MCMC) Sample

ACAC... * *
£ acac... P(Ace | 5 ,model) P(E ,model)

P(E :mOdeI Xgﬁg:::) = ACAC
ACAC. .. P(fgﬁél E ,model) P(E ,model)

P((Z ,model | 13) =

Posterior Odds Likelihood Ratio Prior Odds
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Markov Chain Monte Carlo (MCMC) Sample

We sample from the joint posterior

(x)d

Oy MCMC ~ Random walk

>

Operator
proposal

[

Parameter
space
Peak in
posterior

B rvmems A ey st Geomene | e srgee. SRS

T

-

Mixing well! &

Not mixing! @
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Live Demo - https://delphy.fathom.info/



What kind of epidemic process parameters
do we want to infer?



Compartmental models are used to model infections

S

I R

https://covid19.uclaml.org/model.html



Compartmental models are used to model infections

S

I R

‘ Disclaimer: many more complex models! ‘

https://covid19.uclaml.org/model.html



Compartmental models are used to model infections

S

I R

e S;: the number of susceptible individuals
e [;: the number of infectious individuals
e R;:the number of recovered/deceased/immune individuals

https://covid19.uclaml.org/model.html



Compartmental models are used to model infections

S I R
: 5 Y
Susceptible K amea Recovered
: : dSi BI; 5S¢
R | dt N
dl IS
e S;: the number of susceptible individuals _t — ’B i _ 'YIt
e [;: the number of infectious individuals dt N
e R;:the number of recovered/deceased/immune individuals th
"

https://covid19.uclaml.org/model.htm| Assuming N = fixed pPop



Can calculate P(observed case counts | f=7,y=?) with cases

Figure 2. Weekly number of COVID-19 \ cases v|(n=4,359,630)in Canada as of April 3, & csv
2023,9amET
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Same idea as Maximum
likelihood Phylogenetics
(just without any trees)
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https://health-infobase.canada.ca/covid-19/current-situation.html



So, if we can this with case why do we bother
using phylodynamics and genomic data?

https://github.com/trvrb/phylodynamics-lecture



Genomics can be used to infer unobserved events

o _ . _ # Infected 4
If sampling in early epidemic was missed:

» Time of epidemic outbreak? R Y aas
» Basic reproductive number Ro?

1 | | )
1988 1994 2000 2006

https://github.com/Taming-the-BEAST/Taming-the-BEAST-2021-Online-Lectures/raw/master/Day2_Phylodynamics_-_Tanja_Stadler.pdf



Genomics can be used to infer unobserved events

. . . . . # Infected 4
If sampling in early epidemic was missed:
» Time of epidemic outbreak? /@-—/ B
» Basic reproductive number Ro? o)

L ] | )
1988 1994 2000 2006

https://github.com/Taming-the-BEAST/Taming-the-BEAST-2021-Online-Lectures/raw/master/Day2_Phylodynamics_-_Tanja_Stadler.pdf



Genomics can be used to infer unobserved events

If sampling in early epidemic was missed:
» Time of epidemic outbreak? r

» Basic reproductive number Ro? : ? :
Data does not tell who infected whom: ‘ I ‘ ‘ ‘ K

» Population structure?

Time

https://github.com/Taming-the-BEAST/Taming-the-BEAST-2021-Online-Lectures/raw/master/Day2_Phylodynamics_-_ Tanja_Stadler.pdf



Cases don't tell you (much) about pathogen evolution

DNA withincell betweencell within host between host between species
) &5 | S
L TR e, f ...“.l et v e v MW ¥ lar
\ Al N g’ S A Y ' ’_,' LNy {0 ‘s |
5 ;'f,;: % 18 S e | e e L, N
':‘;" , tas® 7 %; l;. |f 3 L ¥ ) ‘\ '.. ! ¢
. \.\ l ™Y TN ‘ J
' ) \ . [ ,r
‘\fg )
" oL _\: < (= - ‘:
{j& = | .J, < .—/'
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% ./l “us X

https://www.sciencedirect.com/science/article/pii/S1755436514000723



Let's look at some specific use-cases
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Define lineages (groups) of pathogens

D

114



Define lineages (groups) of pathogens

D
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Define lineages (groups) of pathogens

D
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Early warning modelling lineage relative growth advantage

Relative growth advantage

If variants spread pre-dominantly by local transmission across demographic group... (show more)
Estimated proportion through time
100% .

80% . " =

60% Estimated daily proportion [SORUOF N NI KR VIR
(o] °
WeTe[RYileRiId 59.51% [55.38%, 63.64%) S 44%

40% .
S Current adv. @
20%
40-48%
” el s 0

Oct 2022 Nov 2022 Dec 2022 Jan 2023 Feb 2023 m; Apr 2023 Confidence int. @

(*) Assumes that the current advantage is due to an intrinsic viral advantage (a combination of increased transmission, immune escape,
and prolonged infectious period).

https://cov-spectrum.org/explore/Switzerland/Surveillance/Past6M/variants?nextcladePangoLineage=xbb*&

117



|dentify clinically relevant mutations

D
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|dentify clinically relevant mutations

D

119



|dentify clinically relevant mutations

D
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|dentify clinically relevant mutations

D
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|dentify clinically relevant mutations

D
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|dentify clinically relevant mutations

D

See part 2 for more details of
testing these associations!
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Prioritise characterisation of mutations: S:E484K

log,, ID, (inhibition rate, %)

https://www.thelancet.com/journals/lanmic/article/Pl1S2666-5247(21)00068-9

Negative Vaccinated Convalescent
10000  —N—— — . .
Low IgG Moderate IgG High IgG
p=0-0289 p=0-0052 p=0-0019
1000
100 D\U
10
1-
0——=0
TS F A I f I f g
¥ > v X v X » ) v X
O NS O Ne) O 2 O Q' O NS
N\"L > ,\/\’\/ > ,\9 > ,\&”\/ > ,\/\’» >
N Ny S & &
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Inferring internal ancestral states from observed tips

Transition Probabilities/Rates

®_ "0
_—
\

\
I\

3!

https://github.com/trvrb/gs541-phylodynamics 105



Inferring internal ancestral states from observed tips

Transition Probabilities/Rates

~—@®

https://github.com/trvrb/gs541-phylodynamics 126



Trace sources of outbreaks

127



Trace sources of outbreaks

D (Community)

A (Hospital 1)

B (Hospital 1)

Single group
suggests single
source

C (Hospital 1)

E (Community)

F (Community)

128



Trace sources of outbreaks
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Trace sources of outbreaks

D (Community)

A (Hospital 1)

B (Hospital 1)

C (Community)

E (Community)

F (Hospital 1)
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Trace sources of outbreaks

D (Community)

A (Hospital 1)

B (Hospital 1)

Multiple groups
suggest multiple
sources

C (Community)

E (Community)

F (Hospital 1)
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Finding Deer-to-Human transmission

4649
99
L 4534

4581

4645
| 99

4538

4662

100

I: I Canada/ON-PHL-21-44225/2021 I
100 4658
+1oo | - |

MDHHS-SC23517/2020
{ mink/USA/MI-CDC—3886572-001/2020
mink/USA/MI-CDC-3886516-001/2020

mink/USA/MI-CDC-3886779-001/2020

mink/USA/MI-CDC-3886954—-001/2020

L JISA/MI-MDHHS-S

00

mink/USA/MI-CDC-3886891-001/2020

Host

Homo sapien

. Neovison vison

. Odocoileus virginianus

Supporting Circumstantial Evidence:

e Spatially congruent
e Temporally congruent
e Plausible Epidemiological Link
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Convert genomic distance to time

D
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Convert genomic distance to time

D (2021-10-02)

A (2022-09-10)

F (2022-06-15)
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Mutation rates from Root to Tip Regression

b

Substitutions per site

—— Global human 4
] p— Global animal %
—— B. lineage
009251 — Ontario g\:JNTD clade
0.0020
0.0015
0.0010
0.0005
0
January 2020 June 2020 January 2021 June 2021

Collection date

January 2022
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Mutations rates let us time of unobserved events

May-July 2021 R
};i 4534 Mos
™ . Homo sapien
_{_ 4645 . Neovison vison
® 4538 . Odocoileus virginianus
— ~1Year 4662

"00 L%SS
+100

1 124 collansed mink/USA/MI-CDC-3886572-001/2020
May_Aug 2020 mink/USA/MI-CDC-3886516-001/2020

mink/USA/MI-CDC-3886779-001/2020

mink/USA/MI-CDC-3886954-001/2020

100
mink/USA/MI-CDC-3886891-001/2020
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Tree shape tells us about population size

!

| | [

Constant size Growing population

https://github.com/trvrb/gs541-phylodynamics 137



Tree shape tells us about population size
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Constant size Growing population
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Tree shape tells us about population size

!

| | [

Constant size Growing population

https://github.com/trvrb/gs541-phylodynamics 139



Inferring epidemiological parameters from shape

D A

C Low RO
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Inferring epidemiological parameters from shape
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What about evolutionary forces like
selection?



dN/dS is one way to detect selection

dN = non-synonymous mutations (normalised)

dS = synonymous mutations (normalised)



dN/dS is one way to detect selection

Neutral
drift
NS/S=3/3

dN = non-synonymous mutations (normalised)

dS = synonymous mutations (normalised)

dN/dS ~ 1 : drift/neutral selection

Bush, R. Predicting adaptive evolution. Nat Rev Genet 2, 387-392 (2001).
https://doi.org/10.1038/35072023



dN/dS is one way to detect selection

dN = non-synonymous mutations (normalised) Neutra
NS/S=3/
dS = synonymous mutations (normalised) o
LO-
b

Positive
selection
NS/S=6/0

dN/dS > 1 : adaptive/positive selection
dN/dS ~ 1 : drift/neutral selection

Bush, R. Predicting adaptive evolution. Nat Rev Genet 2, 387-392 (2001).
https://doi.org/10.1038/35072023



dN/dS is one way to detect selection

dN = non-synonymous mutations (normalised) el
NS/S=3/3
dS = synonymous mutations (normalised)
b

Positive

dN/dS > 1 : adaptive/positive selection

NS/S=0/0
dN/dS ~ 1 : drift/neutral selection
dN/dS < 1: purifying/negative selection o
? Pu,nfymg
NS/S=0/6

Nature Reviews | Genetics

Bush, R. Predicting adaptive evolution. Nat Rev Genet 2, 387-392 (2001).
https://doi.org/10.1038/35072023



dN/dS is one way to detect selection

©
©
I\.lw'

dN = non-synonymous mutations (normalised) "

o
S

dS = synonymous mutations (normalised)

dN/dS > 1 : adaptive/positive selection —e
=

dN/dS ~ 1 : drift/neutral selection oo

dN/dS < 1: purifying/negative selection _

00

Challenges:

- Mutation rates vary over time/groups



dN/dS is one way to detect selection b

dN = non-synonymous mutations (normalised) s

dS = synonymous mutations (normalised)

100

0- 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000 22,000 24,000 26,000 28,000
[ o [ s el |
|
Challenges:

- Mutation rates vary over time/groups
- Mutation rates vary across genomes



dN/dS is one way to detect selection b

dN = non-synonymous mutations (normalised) s

dS = synonymous mutations (normalised)

100

0 . 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000 22,000 24,000 26,000 28,000
[ o [ s el |
|
Challenges:

- Mutation rates vary over time/groups
- Mutation rates vary across genomes
- Genomes are related (mutations are non-independent)




Non-independence of events in related genomes

@ Non-Synonymous
@ Synonymous



Non-independence of events in related genomes

@ Non-Synonymous
@ Synonymous
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Non-independence of events in related genomes

@ Non-Synonymous
@ Synonymous
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Non-independence of events in related genomes

@ Non-Synonymous
@ Synonymous




Non-independence of events in related genomes

@ Non-Synonymous
@ Synonymous - Phylogeny captures dependency

structure of genomic data




Non-independence of events in related genomes

@ Non-Synonymous

@ Synonymous - Phylogeny captures dependency
structure of genomic data
Informs error term for models
(e.g., regression)

- adaptive Branch-Site Random
Effects Likelihood: Is there a
significant proportion of sites within
selected branches with dN/dS > 1

Smith, MD et al. "Less is more: an adaptive branch-site random effects
model for efficient detection of episodic diversifying selection." Mol.
Biol. Evol. 32, 1342-1353 (2015).


https://doi.org/10.1093/molbev/msv022
https://doi.org/10.1093/molbev/msv022
https://doi.org/10.1093/molbev/msv022

Testing for remdesevir resistance selection

RDV- 1.3

RDV+ 1.1

RDV-1.1 RDV- 2.6

RDV+ 1.5

RDV+ 1.9
RDV+ 2.1
RDV+2.4

RDV+2.6

RDV+ 3.1

RDV+ 3.4

RDV+ 3.4

P

Nirmalarajah, Kuganya, et al. "Use of whole genome sequencing to identify low-frequency mutations in SARS-CoV-2 patients treated with remdesivir." Influenza and Other Respiratory Viruses 17.9
e13179.



Many other analyses are possible

Continual Immune

Weak or Absent Immune Selection

Selection Tree shape controlled by non-selective
population dynamic processes
Population size dynamics Spatial dynamics
Exponential growth Strong spatial structure
A
——
A
B
—{
— B
C
Idealized 4|_E C
Phylogeny c
Shapes
Constant size Weak spatial structure

A
— =
C
) A
Time —» | | Ij B
— - c
A
| 1=
C

Examples Human influenza A virus inter-host HIV Measles, rabies

intra-host HIV inter-host HCV inter-host HIV

Tree Detection of antigenic Estimation of population Estimation of population
Inferences escape mutations growth rates migration rates

Grenien, B. 1. (2uu4).

Massive area:

Birth-death models
Coalescent models
Bayesian skyline/skygrid
models

Spatiotemporal models
(phylogeography)
Recombination
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UniTyIng e EPIgernioingical and Evoiuuonary uynarmics oOf Fatnogens. SCIENce, sus(oooo), szr—s52. doi:10.1126/science.1090727



Summary

- Pathogen evolution and epidemiology are intrinsically linked

- Genomics provides insights into evolution and unobserved events

- Comparison of DNA sequences to databases can be used for diagnostics

- Pattern of mutations across genomes can be used to generate phylogenies

- Phylogenies are structured by sampling, ecology, evolution, and epidemiology
- Probabilistic Bayesian phylogenetic inference is a key tool

- Can use these approaches to do many things including:
- ldentify lineages
- Monitor evolution
- Infer timing/location of outbreaks/events
- Determine epidemiological parameters
- Characterise strength and direction of selection
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