EPAH6052: Pathogen Genomic Epidemiology

Outcomes

- Explain how evolution and infectious disease epidemiology are connected
- Identify what additional information genomic data can provide
- Give example of how genomics can be used for diagnostics
- Explain how you can infer an evolutionary tree (phylogeny)
- Provide examples of processes which determine the shape of a phylogeny
- Articulate the role of Bayesian models in genomic epidemiology
- List at least 3 ways in which a phylogeny can be used in epidemiology

Agents of infectious diseases undergo evolution

Mostly Suceptible

Agents of infectious diseases undergo evolution

Mostly Suceptible

Agents of infectious diseases undergo evolution

Mostly Suceptible

Mostly Resistant

Pathogen evolution impacts treatment

10.1511/2014.106.42

Pathogen evolution impacts treatment

10.1511/2014.106.42

Pathogen evolution impacts treatment

^{10.1511/2014.106.42}

Evolution drives vaccine design/effectiveness

How can we monitor evolution?

DNA encodes RNA which encodes proteins

- DNA encodes RNA which encodes proteins
- Viruses like SARS-CoV-2 skip DNA

• Genomes are the complete collection of genetic instructions

	SARS-CoV2											
0	3,000	6,000	9,000	12,000	15,000	18,000	21,000	24,000	27,000			

• Genomes are the complete collection of genetic instructions

orf1ab

• Sections of the genome with protein instructions are called **genes**

	SARS-CoV2											
0	3,000	6,000	9,000	12,000	15,000	18,000	21,000	24,000	27,000			

• Genome copying is error-prone

- Genome copying is error-prone
- Errors are called mutations

- Genome copying is error-prone
- Errors are called mutations
- Mutations can change protein sequence

- Genome copying is error-prone
- Errors are called mutations
- Mutations can change protein sequence *but don't always*

Mutations are a random walk across a fitness landscape

OVERSIMPLIFICATION - actual landscapes are dynamic/changing & fitness is hard to measure

- Fitness = quantitative representation of individual reproductive success
- *High Fitness = more descendants (larger proportion of circulating population)*
- Low Fitness = fewer descendants (higher chance of dying out)

So, how do we get genomes?

- Pathogen
- Host DNA
- Other Genomes

- Pathogen
- Host DNA
- Other Genomes

- Pathogen
- Host DNA
- Other Genomes

How do we do this at scale?

Automation of labour intensive steps

https://www.bd.com/scripts/europe/labautomation/productsdrilldown.asp?CatlD=455&SublD=1836&siteID=20309&d=&s= europe%2Flabautomation&sTitle=Lab+Automation&metaTitle=Total+Lab+Automation&dc=europe&dcTitle=Europe

Automation of labour intensive steps

LOADING

https://www.bd.com/scripts/europe/labautomation/productsdrilldown.asp?CatlD=455&SublD=1836&sitelD=20309&d=&s=europe%2Flabautomation&sTitle=Lab+Automation&metaTitle=Total+Lab+Automation&dc=europe&dcTitle=Europe%dcTi

Sequencing technology has rapidly changed and improved

~1972-1977

First generation

Sanger sequencing Maxam and Gilbert Sanger chain termination

Infer nucleotide identity using dNTPs, then visualize with electrophoresis

500-1,000 bp fragments

https://www.pacb.com/blog/the-evolution-of-dna-sequencing-tools/

Sanger Sequencing

https://www.sigmaaldrich.com/CA/en/technical-documents/protocol/genomics/sequencing/sanger-sequencing
Sequencing technology has rapidly changed and improved

~1972-1977~2001-2004First generationSecond generation
(next generation sequencing)

Sanger sequencing Maxam and Gilbert Sanger chain termination

Infer nucleotide identity using dNTPs, then visualize with electrophoresis

500-1,000 bp fragments

454, Solexa, Ion Torrent, Illumina

High throughput from the parallelization of sequencing reactions

~50-500 bp fragments

https://www.pacb.com/blog/the-evolution-of-dna-sequencing-tools/

Sequencing by Synthesis

Lu, Yuan, et al. "Next generation sequencing in aquatic models." Next Generation Sequencing-Advances, Applications and Challenges 1 (2016): 13.

Sequencing technology has rapidly changed and improved

~1972-1977~2001-2004First generationSecond generation
(next generation sequencing)

Sanger sequencing Maxam and Gilbert Sanger chain termination

Infer nucleotide identity using dNTPs, then visualize with electrophoresis

500-1,000 bp fragments

454, Solexa, Ion Torrent, Illumina

High throughput from the parallelization of sequencing reactions

~50-500 bp fragments

Short-read sequencing

https://www.pacb.com/blog/the-evolution-of-dna-sequencing-tools/

Short-read sequencing

Long-read sequencing

https://www.pacb.com/blog/the-evolution-of-dna-sequencing-tools/

PacBio Sequencing

https://www.pacb.com/wp-content/uploads/SMRT-Sequencing-Brochure-Delivering-highly-accurate-long-reads-to-drive-discovery-in-life-science.pdf

Nanopore Sequencing

Wang, Yunhao, et al. "Nanopore sequencing technology, bioinformatics and applications." Nature biotechnology 39.11 (2021): 1348-1365.

https://www.pacb.com/blog/the-evolution-of-dna-sequencing-tools/

Mobile sequencing lab in a suitcase

https://crain-platform-genomeweb-prod.s3.amazonaws.com/s3fs-public/styles/1200x630/public/lab_in_a_suitcase.jpeg

See lecture reading: Loman & Gardy 2017

www.langmead-lab.org/teaching-materials

www.langmead-lab.org/teaching-materials

www.langmead-lab.org/teaching-materials

GTATGCACGCGATAG TATGTCGCAGTATCT CACCCTATGTCGCAG GAGACGCTGGAGCCG TAGCATTGCGAGACG GGTATGCACGCGATA TGGAGCCGGAGCACC CGCTGGAGCCGGAGC GCATTGCGAGACGCT TGTCTTTGATTCCTG CGCGATAGCATTGCG CCTATGTCGCAGTAT GCACCCTATGTCGCA GTATCTGTCTTTGAT CCTCATCCTATTATT GACGCTGGAGCCGGA TATCGCACCTACGTT CAATATTCGATCATG GATCACAGGTCTATC ACCCTATTAACCACT CACGGGAGCTCTCCA TGCATTTGGTATTTT CGTCTGGGGGGGTATG CACGCGATAGCATTG GTATGCACGCGATAG ACCTACGTTCAATAT TATTTATCGCACCTA CCACTCACGGGGGGGCT Reads GCGAGACGCTGGAGC CTATCACCCTATTAA CTGTCTTTGATTCCT ACTCACGGGAGCTCT GCACCTACGTTCAAT CCTACGTTCAATATT GTCTGGGGGGGTATGC AGCCGGAGCACCCTA GACGCTGGAGCCGGA GCACCCTATGTCGCA GTATCTGTCTTTGAT CCTCATCCTATTATT TATCGCACCTACGTT CAATATTCGATCATG GATCACAGGTCTATC ACCCTATTAACCACT CACGCGATAGCATTG CACGGGAGCTCTCCA TGCATTTGGTATTTT CGTCTGGGGGGGTATG

Your genome

 ${\tt CGTCTGGGGGGGTATGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTCGCAGTATCTGTCTTTGATTCCTG}$

Got a genome, now what?

- Compare to genomes in database from known organisms

- Compare to genomes in database from known organisms
- Average Nucleotide Identity (ANI) is an example of a similarity metric

$$g_{G_1 \rightarrow G_2} \underbrace{\sum_{bbh} (Percent Identity * Alignment length)}_{lengths of BBH genes}$$

- Compare to genomes in database from known organisms
- Average Nucleotide Identity (ANI) is an example of a similarity metric

$$g_{G_1 \rightarrow G_2}^{\text{ANI}} \underbrace{ \sum_{bbh}^{bbh} (Percent Identity * Alignment length)}_{lengths of BBH genes}$$

- Identify pathogen as closest reference genome taxa
- Use identity to drive treatment (if x then treat by y)
- Typing for outbreak investigation linkage

Genomic Diagnostics: What drugs will work?

Genomic Diagnostics: What drugs will work?

- Detect NDM-1 carbapenemase gene
- Pathogen protein that destroys many antibiotics (beta-lactams)
- => Treat with alternative class of antibiotics (e.g., colistin)
- Hours vs weeks for some pathogens (TB)

Genomic Diagnostics: identifying mobile genetic elements

OK, but what else can we do with genomes?

Detection mutations relative to reference

Detection mutations relative to reference

Detection mutations relative to reference

Using pattern of mutations to infer relationships

Using pattern of mutations to infer relationships

What does this tree actually represent?

What determines underlying process?

Many forces shaping underlying process

Many forces shaping underlying process

Many forces shaping underlying process

Let's start with the "simple" reconstruction of the transmission network

Complicated sampling of a (within-host) population of a (between host) population

Complicated sampling of a (within-host) population of a (between host) population

Same tree can be consistent with different scenarios

10.1371/journal.pcbi.1004613

Same tree can be consistent with different scenarios

10.1371/journal.pcbi.1004613

=> Probabilistic inference!

How can we can model phylodynamic processes probabilistically?

P(, model | ACAC...)

Bayesian inference is a key tool in phylodynamics

https://github.com/Taming-the-BEAST/Taming-the-BEAST-2021-Online-Lectures/blob/master/Day1_First_Steps_-_Ceci_Valenzuela.pdf

$$P(\fbox{,model}^{*}|\underset{ACAG}{ACAG}) = \frac{P(\underset{ACAG}{ACAG})}{P(\underset{ACAG}{ACAG})} P(\fbox{,model}) P(\fbox{,model})}{P(\underset{ACAG}{ACAG})}$$

$$P(\fbox{,model}|\underset{ACAG}{ACAG}) = \frac{P(\underset{ACAG}{ACAG})}{P(\underset{ACAG}{ACAG})} P(\fbox{,model}) P(\fbox{,model})}{P(\underset{ACAG}{ACAG})}$$

Posterior Odds

Posterior Odds

Likelihood Ratio

Prior Odds

Live Demo - https://delphy.fathom.info/

What kind of epidemic process parameters do we want to infer?

Disclaimer: many more complex models!

- S_t : the number of susceptible individuals
- I_t : the number of infectious individuals
- R_t : the number of recovered/deceased/immune individuals

- S_t : the number of susceptible individuals
- I_t : the number of infectious individuals
- R_t : the number of recovered/deceased/immune individuals

Assuming N = fixed pop

dt

 dR_t

https://covid19.uclaml.org/model.html

Can calculate P(observed case counts | β =?, γ =?) with cases

Figure 2. Weekly number of COVID-19 cases (n=4,359,630) in Canada as of April 3, 2023, 9 am ET

Same idea as Maximum likelihood Phylogenetics (just without any trees)

🕹 .csv

Date https://health-infobase.canada.ca/covid-19/current-situation.html

So, if we can this with case why do we bother using phylodynamics and genomic data?
Genomics can be used to infer unobserved events

If sampling in early epidemic was missed:

- Time of epidemic outbreak?
- Basic reproductive number R₀?

Genomics can be used to infer unobserved events

If sampling in early epidemic was missed:

- Time of epidemic outbreak?
- Basic reproductive number R₀?

Genomics can be used to infer unobserved events

If sampling in early epidemic was missed:

- Time of epidemic outbreak?
- ► Basic reproductive number R₀?

Data does not tell who infected whom:

Population structure?

Time

Cases don't tell you (much) about pathogen evolution

https://www.sciencedirect.com/science/article/pii/S1755436514000723

Let's look at some specific use-cases

Define lineages (groups) of pathogens

Define lineages (groups) of pathogens

Define lineages (groups) of pathogens

Early warning modelling lineage relative growth advantage

Relative growth advantage

If variants spread pre-dominantly by local transmission across demographic group... (show more)

(*) Assumes that the current advantage is due to an intrinsic viral advantage (a combination of increased transmission, immune escape, and prolonged infectious period).

https://cov-spectrum.org/explore/Switzerland/Surveillance/Past6M/variants?nextcladePangoLineage=xbb*&

Prioritise characterisation of mutations: S:E484K

Inferring internal ancestral states from observed tips

Inferring internal ancestral states from observed tips

Trace sources of outbreaks

Trace sources of outbreaks

Trace sources of outbreaks

Trace sources of outbreaks

Trace sources of outbreaks

Finding Deer-to-Human transmission

Supporting Circumstantial Evidence:

- Spatially congruent
- Temporally congruent
- Plausible Epidemiological Link

Convert genomic distance to time

Convert genomic distance to time

Mutation rates from Root to Tip Regression

Mutations rates let us time of unobserved events

Tree shape tells us about population size

https://github.com/trvrb/gs541-phylodynamics

Tree shape tells us about population size

https://github.com/trvrb/gs541-phylodynamics

Tree shape tells us about population size

https://github.com/trvrb/gs541-phylodynamics

Inferring epidemiological parameters from shape

Inferring epidemiological parameters from shape

What about evolutionary forces like selection?

dN/dS is one way to detect selection

dN = non-synonymous mutations (normalised)

dS = synonymous mutations (normalised)

dN/dS is one way to detect selection

dN = non-synonymous mutations (normalised)

dS = synonymous mutations (normalised)

a Neutral drift NS/S=3/3

dN/dS ~ 1 : drift/neutral selection
dN/dS is one way to detect selection

dN = non-synonymous mutations (normalised)dS = synonymous mutations (normalised)

dN/dS > 1 : adaptive/positive selection
dN/dS ~ 1 : drift/neutral selection

Bush, R. Predicting adaptive evolution. *Nat Rev Genet* **2**, 387–392 (2001). https://doi.org/10.1038/35072023

dN/dS is one way to detect selection

dN = non-synonymous mutations (normalised)dS = synonymous mutations (normalised)

dN/dS > 1 : adaptive/positive selection

dN/dS ~ 1 : drift/neutral selection

dN/dS < 1: purifying/negative selection

Bush, R. Predicting adaptive evolution. *Nat Rev Genet* **2**, 387–392 (2001). https://doi.org/10.1038/35072023

dN/dS is one way to detect selection

dN = non-synonymous mutations (normalised)

dS = synonymous mutations (normalised)

dN/dS > 1 : adaptive/positive selection

dN/dS ~ 1 : drift/neutral selection

dN/dS < 1: purifying/negative selection

Challenges:

- Mutation rates vary over time/groups

- Mutation rates vary over time/groups
- Mutation rates vary across genomes

- Mutation rates vary over time/groups
- Mutation rates vary across genomes
- Genomes are related (mutations are non-independent)

Non-SynonymousSynonymous

Non-Synonymous

Synonymous

Non-Synonymous

OSynonymous

- Non-Synonymous
- **O**Synonymous

Non-Synonymous

OSynonymous

- Phylogeny captures dependency structure of genomic data

Non-Synonymous

- Phylogeny captures dependency structure of genomic data
- Informs error term for models (e.g., regression)
- adaptive Branch-Site Random
 Effects Likelihood: Is there a significant proportion of sites within selected branches with dN/dS > 1

Smith, MD et al. "Less is more: an adaptive branch-site random effects model for efficient detection of episodic diversifying selection." Mol. Biol. Evol. 32, 1342–1353 (2015).

Testing for remdesevir resistance selection

Many other analyses are possible

Massive area:

- Birth-death models
- Coalescent models
- Bayesian skyline/skygrid models
- Spatiotemporal models (phylogeography)
- Recombination

Grennen, в. н. (2004). Unitying the Epidemiological and Evolutionary Dynamics of Pathogens. Science, 303(5050), 321-332. doi:10.1126/science.1090727

Summary

- Pathogen evolution and epidemiology are intrinsically linked
- Genomics provides insights into evolution and unobserved events
- Comparison of DNA sequences to databases can be used for **diagnostics**
- Pattern of mutations across genomes can be used to generate **phylogenies**
- Phylogenies are structured by sampling, ecology, evolution, and epidemiology
- Probabilistic Bayesian phylogenetic inference is a key tool
- Can use these approaches to do many things including:
 - Identify lineages
 - Monitor evolution
 - Infer timing/location of outbreaks/events
 - Determine epidemiological parameters
 - Characterise strength and direction of selection