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If we have an alighment...



...what can we do with it?

For many questions, we would like to know the distribution of residues
(and gaps) in a block of sequences

CGGCCT
CGAGCT
GATGCA
AAAGCA
ATAGCA
TCTACT
AACATC
TACGCC
AACGAG
AGCTGT



Position-specific scoring matrices
(PSSM)

PAM, BLOSUM, etc. are position-independent
scoring matrices

A PSSM is a log-odds matrix of column
frequencies
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Frequency Matrix

1 (2 |3 |4 |5 |6
A 105/05(03|0.2|0.1|0.3
Cc [(02(01(04(0.1|0.7|0.2
G [(01|03(01|05(01/|0.1
T (02]01(0.2(0.2|0.1|0.4

Background frequencies:

A =19/60=0.317
C=17/60=0.283

G=12/60=0.2
T=12/60=0.2




Frequency Matrix

log,,-odds matrix (n = e)

1 (2 |3 |4 |5 |6
A [(05]05(03(0.2(0.1]|0.3
cC |02(01(04|0.1|0.7(0.2
G [(01|03(01|05(0.1|0.1
T (02]01(0.2(0.2|0.1|0.4

Background frequencies:

A=19/60=0.317
C=17/60=0.283

G=12/60=0.2
T=12/60=0.2

1 5
A 0.18 -0.5
C -0.15 0.54
G -0.3 -0.3
T 0 -0.3

Aligning a sequence against log-odds matrix:

Add scores for residue at each position, then take nsU™m




How do we represent insertions and deletions?
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Transitions in a Probability Matrix

P=1
"

A 0.5 0.1
C 0.2 C C C C 0.7
G 0.1 G G G G 0.1
T 0.2 T T T T 0.1

Transition from match state k to match state k + 1 with probability 1.0

HSINIA



. B = B B B

Match states



Insertions

Insert states

Transition probabilities out of any state must sum to 1.0



Deletions

B = B B B

\




Hidden Markov Model
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HIDDEN because we don’t actually know the states of the sequence we’re looking at
MARKOQOV because the future does not depend on the past
MODEL because, well, it’s a model
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Key components of an HMM

 EMISSIONS: A character (nucleotide or amino acid)
produced by a given insertion or match state

emission probability

* TRANSITIONS: The probability of going from state j to
state j (sum of all transitions from a given state = 1)
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Let’s run a sequence through the HMM!
ABCDEF
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Let’s run a sequence through the HMM!
ABCDEF

Fin
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Let’s run a sequence through the HMM!
ABCDEF
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The product of the EMISSION PROBABILITIES e
and the TRANSITION PROBABILITIES a through
the model

The joint probability of the sequence x and the
path



The produc BILITIES e

and the TR/ Or sum of |OgS a through
the model

The joint probability of the sequence x and the
path



Best path

* There are many paths 7 through the model for
any given sequence x

e What is the best path 7~ ?



The Viterbi Algorithm

* As with multiple sequence alignment, we
cannot be greedy in our choice of path

 But we only need to consider the best path to
every possible state in the model

* Dynamic programming!
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v(Start) =1

Vi (') =€ (Xi) max, (Vk (i _1)akl)

Huh?



i={ABCDEF}
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states k | statel

Vi (') =€ (Xi) max, (Vk (i _1)akl)

Viterbi score max over all
of sequence ~ possibilities
position /at ~ Emission Viterbi score at previous state,

state /  probability of x; times the transision probabillity



So we are saving the best path for each character {
A,B,C,D,E,F } at each state in the HMM

When we choose our best incoming path, we save a pointer
as before and backtrace

Complexity = O(LS) (# of characters x # of states in the HMM
structure) — kinda like n?

The Viterbi alignment of each member of a set of sequences
X to a trained HMM vyields a multiple alignment of these
sequences
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All Paths

FORWARD algorithm
sums over incoming paths = {ABCDEF)

instead of taking max \

0\\
BB

states k | statel

fl (1) = € (Xu)Z( fk (1 _1)akl )




The Backward Algorithm it-;%

e Kind of like the forward algorithm, but starts
from the finish and works backward

b, (1) = Z a,€ (Xi,1)0, (1 +1)

* Why would we want to do this?
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By running the forward and backward algorithms together
for a given sequence, we can compute the probability that
character i in sequence x maps to state k

ABCDEF

P(x, k =D)?
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Training HMMs
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Two components of training

e Build the HMM structure or ‘skeleton’

— Custom-tailored with exquisite knowledge of the
problem to be modelled

— In ignorance, build a complete model

* Assign transition and emission probabilities to
the thing



Training (supervised)

* Construct a multiple sequence alignment
using some method, and build the HMM using
empirical frequencies

* Supervised because we're specifying exactly
WHAT sequences belong in the model



GCCT

GC=C Vit staes
A-—-A Insertion state
T —

GC-A

Deletions

Note that we now get custom gap costs!
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Training (Unsupervised)

 What if we don’t already have an alighment of
the sequences?

* |n this case, we can use an iterative approach
to maximize the probability of the model



Unsupervised training:
Baum-Welch Algorithm

* Random start for all emission probabilities (e,)
and transition probabilities (a,)

* Run the forward and backward algorithms on all
training sequences to count empirical
probabilities E, and A

* Use these probability distributions to generate
new e, and a,



Big Alphabets, Few Sequences

Homologous residues
from a family of sequences Sampled set

H

Build matrix

Incomplete sampling

in our database
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What happens when the probability of
character i at position k is = 0?

) O O HH X Z2 5090 O on 00O U=
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Psolution

Add pseudocounts to each column of the
multiple sequence alignment

Laplace’s Rule: Add 1 to every count (!)

Add small counts in proportion to background
frequencies

Modify added counts using PAM matrix or
other distributions (Dirichlet mixtures)



Beyond sequences:
Other applications of HMMs



Regulatory Element Detection

\ 3 different Res
(like promoters)

Wu and Xie, J Comput Biol (2007) 37



Glycosylphasphatidylinositol anchors
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The HMM model of the w-site. Different colors represent different emission probability sets,

preceding region is represented in dark green, The spacer and the C terminal hydrophobic

regions are depicted in violet and blue, respectively. The total number of independent trainable
parameters is 147,

Pierleani et &/, BMC Bioinformatics 2008 9:392  doid10.1186/1471-2105-2-392

w-site is represented in red. Surrounding residues are colored in green, orange and yellow, The

Tethered protein

|

GPI anchor
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Gene prediction

Given a genome sequence (complete or draft),
identify all of the genes
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Maybe not so easy

Because:
— Alternative start codons (TTG, GTG)
— Uncertain start codons (which ATG?)
— Introns
— Short genes
— Non-protein-coding genes
— Genes that overlap
— Genes with no known homologs



What not to do

A. pernix
0.0124 — Not matching
0.010.4 SWISS-PROT (1819)
= — Matching
ﬂ 0.008 SWISS-PROT (447)
o
_5 0.006 -
® 0.004-
L
0.002+
0.000 ] .
0 500 1000
Length of protein (amino acids)
TRENDS in Genetics

Skovgaard et al (2001) Trends in Genetics

Aeropyrum pernix genome:
If distance between start and stop
codon is > 100 nt, call it a gene!
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Hidden Markov Models —
the basic idea
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Useful pieces of the puzzle

Non-coding and coding sequence have very
different patterns (G+C content, periodicity,

etc)

There are useful translation start signals
beyond just the start codon



GeneMark.hmm

Lukashin and Borodovsky (1998) Nucleic Acids Res

Forward
(direct)
strand

N

Direct strand coding state:
Typical gene of length i nt
Direct strand coding state:
Atypical gene of length j nt

Direct start Direct stop
codon codon

Non-coding state
of length n nt

Note that hidden states have different lengths!
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The key to the whole thing

We're going to find the trajectory (series of states) that has the
highest probability of occurring with the sequence

S = the sequence {b,b,...b,}
A" = the best trajectory
ad. = the length of sequence (d) assigned to state a;

Pmax = P(4*,8) = max  Prob{(a,d,)ayd,)..(aydy). biby...b) |
(aydy)..(ayd,,)




Probabilities!!

Pa,, (dn) Probability of duration d,, for state a,,

EMISSION
Pam (D) Probability of subsequence b being observed in state a,,

TRANSITION { 9a,, ,a,  Probability of change from state m— 1 to state m

And that gives us Viterbi, forward, and backward algorithms
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Probability dens

Probability density

0.003

0.002 |

0.001 |

0.012

0.008 |
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Parameters!

Histogram
= Gamma distribution

0 500 1000 1500 2000 2500
Length (nt)

3000

Histogram

— Exponential distribution

0 100 200 300 400
Length (nt)

500

Length distribution of genes in E. coli

Length distribution of intergenic
regions in E. coli

Sequence probabilities are based on codon-aware (for coding sequence)
and homogeneous (for non-coding sequence) Markov models
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Genome Genes Genes Exact Missing Wrong
annotated predicted prediction (%) genes (%) genes (%)

A.fulgidus 2407 2530 73.1 10.8 (2.0) 15.1
B.subtilis 4101 4384 77.5 3.6 (2.8) 9.8
E.coli 4288 4440 75.4 5.0(2.7) 8.2
H.influenzae 1718 1840 86.7 3.8(3.2) 10.2
H.pylori 1566 1612 79.7 6.0 (4.4) 8.7

M. genitalium 467 509 78.4 9.9 (1.7) 17.3
M. jannaschii 1680 1841 72.7 4.6 (0.8) 12.9
M.pneumoniae 678 734 70.1 7.8 (4.1) 13.6
M.thermoauthotrophicum 1869 1944 70.9 5.0(3.5) 8.6
Synechocystis 3169 3360 89.6 4.0 (1.5) 9.4
Averaged 21943 23194 78.1 5.4(2.7) 10.4

From reference / Start and stop /

database (GenBank)

codons the same

i

“false negatives”

/

“false positives”
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Refinements to GeneMark.hmm

Look for ribosome binding site in preceding gene to identify overlaps (1998)
Model construction from very small datasets (1999)

Unsupervised application to any prokaryotic genome (2005)

Mapping of RNA reads to identify intron / exon boundaries (2014)

Using protein databases for “hints” (2020)



Advantages of HMMs

* Probabilistic framework — the forward
algorithm returns the probability of the data
(sequence) given the model (the HMM)

* Eminently tweakable — can be designed
carefully to capture the patterns in biological
sequences



Disadvantages

 Must be designed carefully to adequately capture
the patterns in biological sequences

— Or, use a generic framework

* Can be computationally expensive (kind of like DP
for sequence alignment)

* It’s Markovian, so you cannot represent
correlations of matches at different sites



Implementations

* HMMER (http://hmmer.janelia.org/)

* SAM (http://compbio.soe.ucsc.edu/sam.html)

52
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(Baum-Welch in depth)

% Emission Run sequence % Emission

state E; & set through the > state E;
|:> time t model (F-B) |:> timet+1
Old emission frequencies: New emission frequencies:
A=0.2 A=0.24
B=0.05 B =0.06
&=0.03 & =0.01
A=0.1 fl=0.11
N=0.01 N=0.21

(=007 £=0.02



Use training set matches
to update HMM emissions
and transitions

Use F-B to match training
sequences to HMM

How well does the
model fit the data?

Stop if:

Fit stops improving
You get tired
Power failure

4

Last step: build MSA
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Problem with Baum-Welch

 Gradient descent, therefore sensitive to
random starting conditions!

* You can try multiple starting points, or
methods that perturb the probabilities to try
and escape local optima



Example: Remote homology searching

S
* What is my mystery sequence? O »’
— Take sequence of interest

— Compare against a database using algorithm X
— ldentify statistically significant alignments

* |Instead of comparing against a set of individual
sequences, we can instead compare to:

— Intermediate sequence
quence () @ ¢

— Profile
— HMM




Park et al., J. Mol. Biol. (1998)

* Contrast these various approaches on a
reference set from the Structural Classification
of Proteins (SCOP) database

* A challenging problem — low (<40%) sequence
identity means potentially lots of false
negatives



Data Set

* Homologous superfamilies in the SCOP
database

* Collect a total of 935 proteins
— 436,645 (935 choose 2) pairs

— Of these, 2096 pairs (0.48%) are definitely
homologous

— 1896 pairs are of uncertain relationship (same
protein fold, uncertain homology)



HMM training

For each of the 935 sequences:

Query —_—

v T

YN 1sulese yoieas

—

Stringent search against NR
(non-redundant protein) database
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PDB20D—) saquence database

e < HMM (amazing)
r""-— o
0a| ;7 _—"( PsLBLAST ) < Profile (coming next lecture)
J e —== Intermediate sequence

(not really used)

Pairwise methods (straightforward)

0.3 Hf
|'
-a-""'J_.j-:__v—"—"_F _ GAP-BLAST ) <€

a1 |

Fraction of total homologous pairs detected

a 1w @20 30 40 50 60 J0 80 30 100

Rate of false positives (x100,000)
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Also

Detection of short homologous sequences
Intron / exon boundaries

Transmembrane domains

Other 2D and 3D structural features
Protein-protein interactions

Gene predictions (GeneMark)
Recombined regions in DNA

Evolutionary rate variation

CvrAnn kalhvi/icid 41 A ~



