

Lab 10: Regression

Part 0: Submission/Reference Materials
Remember to read (and write!) good documentation and use the internet to find code examples.

Finding and using appropriate/accurate reference materials is hard to teach directly, but tends to be

what separates bad scientific programmers from good ones!

If you get stuck:

- Review the lecture material

- Check the docstrings of functions you are trying to use (hint: use ?function in jupyter)

- The pandas official documentation includes all of the commands you need to complete this

week’s practical https://pandas.pydata.org/docs/user_guide/index.html#user-guide

- Use online resources like stackoverflow, w3schools, realpython etc. (but make sure you don’t

blindly copy code without working out HOW it works).

- Looking up materials is totally fine but remember if you copy code (or autocomplete it)

directly from any source, you MUST cite where you got it from in a comment next to the

code.

Submit this assignment as a formatted notebook - include an explanation of your answers and make

sure every function has a clear docstring that explains what it does, its arguments, and what it

returns. This will be part of the grading of each of your answers.

Part 0: Parse the coffee cooling dataset
We will use the numpy function loadtxt to load our text file into a numpy array. The documentation

for np.loadtxt can be found here.

Assuming the data is in a file called “my_data.txt”, which has two columns of floats, separated by

whitespace, then we can load the data into and x and y numpy array like this:

data = np.loadtxt("my_data.txt")
x = data[:,0] # take all the rows of column 0
y = data[:,1]

Download the data file coffee_temps.txt from the course website using this link:

https://maguire-lab.github.io/scientific_computing/static_files/practicals/coffee_temps.txt

The file coffee_temps.txt holds the time and temperature data for a cup of coffee cooling.

https://numpy.org/devdocs/reference/generated/numpy.loadtxt.html
https://maguire-lab.github.io/scientific_computing/static_files/practicals/coffee_temps.txt

Q1 [2 points]: Write a function which takes in a filepath to a 2-column whitespaced separated text

file and using np.loadtxt returns an x and y numpy array. Show this function works by using it to

read the the downloaded coffee_temps.txt file

Q2 [4 points]: Using matplotlib.pyplot (import matplotlib.pyplot as plt) create a

scatter plot of the x and y arrays you just created with red dots representing each data point and

appropriate x and y-axis labels. By inspecting the plot manually try to approximate the intercept and

slope of a best fitting straight line.

Part 1: Linear Regression
A model of coffee cooling in a room at 22oC is

 ∆𝑇 = 𝑇
𝑛+1

 − 𝑇
𝑛
 = − 𝑘(𝑇

𝑛
 − 𝑇

𝑟
)

Where is the room temperature (i.e., 22oC), is the temperature at time point n and is 𝑇
𝑟

 𝑇
𝑛

𝑇
𝑛+1

the temperature at the n+1 time point.

Q3 [4 points]: Using both scipy’s linregress function and numpy’s polyfit function fit a

straight line to the coffee temp data using y as the temperature and x as the time interval.

Compare the intercept and slope parameter inferred using these methods with your estimate from

Q2.

import scipy.stats as scs
import numpy as np
scs.linregress
np.polyfit

Your code should print out the intercept and slope for each method (visual estimation, scipy and

numpy).

Q4 [2 points]: Using matplotlib.pyplot make a plot of the 3 regression lines. Use title, a

different colour/style and label for each line and use the legend function to create a legend

explaining what each line represents.

Q5 [4 points]: Using 1 of these regression models - calculate the residuals (distance of actual y values

from those predicted using the regression model for a given x-value). Create a scatterplot of these

residuals for different values of x. Do these residuals look randomly distributed or is there a pattern

in them? You can distinguish the residuals on the plot using plt.axhline

Q6 [6 points]: Using a bootstrapping approach and scipy.linregress calculate the 95%

confidence intervals for the slope and intercept coefficients for a linear regression of the coffee data.

(Hint: look at last week’s practical and lecture if you are unsure how to do this).

Part 2: Polynomial Regression
Q7 [4 points]: Implement a function for polynomial regression that fits polynomials of different

degrees (2, 3, and 4) to the coffee cooling data using np.polyfit. Compare the residual sum of

squares for each of these models to 1 of the linear models.

	Lab 10: Regression
	Part 0: Submission/Reference Materials
	Part 0: Parse the coffee cooling dataset
	Part 1: Linear Regression
	Part 2: Polynomial Regression

