
Lab 3: While, Modules, and

Namespaces

Part 0: Submitting clean notebooks
As discussed yesterday, a clean well documented notebook is an important way to produce high

quality reproducible scientific analyses. Like last week you will submit your code as a notebook but

with some additional formatting requirements:

-​ The first cell should be a markdown cell containing appropriately formatted title (as heading

1), your name, and the date.

-​ Each answer should be preceded by a markdown cell that indicates the question (as heading

2).

-​ Every function should have a clear docstring that includes an explanation of what the

function does, the parameters it takes in, and what it returns

-​ The notebook should be freshly run from top to bottom before submitting and any errors

resolved (i.e., each code cell with executed in order - you can do this with Jupyter’s “Kernel”

Menu at the top -> “Restart Kernel and Run All Cells”)

Markdown basic syntax can be found here: https://www.markdownguide.org/basic-syntax/ and

remember you can change a cell from Code to Markdown (and back) using the down-arrow

dropdown menu on the second row at the top.

https://www.markdownguide.org/basic-syntax/

Here is an example of a well-formatted notebook showing the markdown:

And here is what it looks like when you run everything:

Part 1: While Loops
Sometimes we want to loop until a certain conditional is no longer True. For example, let’s say we

have some boiling water at 100C and a room that is 25C. We hypothesise that this water will cool

down each minute by 10% of its temperature difference with the room. How can we easily work out

how long the water will cool down to room temperature? We can simulate it!

How do we do this? Well, we want to take the starting water temperature (100C), work out the

difference between that and room temperature (25C), and then remove 10% of that value from the

water temperature. Then we want to repeat this whole process UNTIL the water reaches room

temperature.

The way we do this in python is by using a while-loop. What they do is simply do a test like an

if-statement, but instead of running the code block once, they jump back to the "top" where

the while is, and repeat. A while-loop runs until the expression is False.

Here's the problem with while-loops: Sometimes they do not stop. This is great if your intention

is to just keep looping until the end of the universe. Otherwise you almost always want your loops to

end eventually.

To avoid these problems, there are some rules to follow:

1.​ Make sure that you use while-loops sparingly. Usually a for-loop is better.

2.​ Review your while statements and make sure that the boolean test will become False at

some point.

3.​ When in doubt, print out your test variable at the top and bottom of the while-loop to

see what it's doing.

So, what would our water example look like:

def cool_water(initial_temp, room_temp):​
 """​
 Simulates water cooling to room temperature.​
 Each minute, the water loses 10% of its temperature difference

 with the room.​
 ​
 Parameters:​
 - initial_temp: Starting water temperature (Celsius)​
 - room_temp: Room temperature (Celsius)​
 ​
 Returns: Number of minutes to cool within 0.5 degrees of room temp​
 """​
 current_temp = initial_temp​
 minutes = 0​
​
 # Continue until within 0.5°C​
 while abs(current_temp - room_temp) > 0.5: ​
 temp_difference = current_temp - room_temp

 # Lose 10%​
 current_temp = current_temp - (0.1 * temp_difference)

 minutes += 1​
 ​
 return minutes, current_temp

Q1. Radioactive decay is the process by which an unstable radioactive isotope turns into another

isotope due to losing energy from emitting radiation. This is a random process but in aggregate we

can express how quickly this happens in terms of “half-life” or a decay constant. Carbon-14

undergoes radioactive decay with a half-life of ~5,730 years. This means every 5,730 years half of

your Carbon-14 will decay into other isotopes. Write a function with the parameters

“initial_amount” (of radioisotope in grams) and half_life (in years) and then calculate how many

half-lives (or equivalent years) it will be until you have <= 1g of a radioisotope left.

Part 2: Dictionaries

Dictionaries are a way of representing key=value data, we use this type of data all the time

without realizing it. When you read an email you might have:

From: j.smith@example.com​
To: zed.shaw@example.com​
Subject: I HAVE AN AMAZING INVESTMENT FOR YOU!!!

On the left are the keys (From, To, Subject) which are mapped to the contents on the right of the :.

Programmers say the key is "mapped" to the value, but they could also say "set to". As in, "I set

From to j.smith@example.com." In Python I might write this same email using a dictionary like

this:

email = {​
 "From": "j.smith@example.com",​
 "To": "zed.shaw@example.com",​
 "Subject": "I HAVE AN AMAZING INVESTMENT FOR YOU!!!"​
};

You create a dictionary by:

1.​ Opening it with a { (curly-brace).

2.​ Writing the key, which is a string here, but can be numbers, or almost anything.

3.​ Writing a : (colon).

4.​ Writing the value, which can be anything that's valid in Python.

Once you do that, you can access this Python email like this:

email["From"]​
'j.smith@example.com'​
​
email["To"]​
'zed.shaw@example.com'​
​
email["Subject"]​
'I HAVE AN AMAZING INVESTMENT FOR YOU!!!'

The only difference from list indexes is that you use a string ('From') instead of an integer. Just

like a list, the index and items can also be variables. Dictionaries can use a string, boolean, integer, or

float as a key (or variables containing them) but not a list or a tuple. You can also put a dictionary

inside a list or a list inside a dictionary (as a value).

list_of_dictionaries = [​
 {'a': 5}, ​
 {1: 'a', 2: 'b'},​
 {True: x, False: y},​
]​
​
dictionary_of_lists = {'a': [1, 2, 3], 1: ['a', 'b', 'c']}

You are now going to repeat the exercise we did last week with lists to get some practice

accessing dictionaries.

Q2. Copy the following dictionaries into your notebooks. For each of the following lists of

dictionaries and pieces of data write down how to get that information. You should attempt to

do this in your head by looking at the code, then test your guess in the Jupyter

fruit = [​
 {'kind': 'Apples', 'count': 12, 'rating': 'AAA'},​
 {'kind': 'Oranges', 'count': 1, 'rating': 'B'},​
 {'kind': 'Pears', 'count': 2, 'rating': 'A'},​
 {'kind': 'Grapes', 'count': 14, 'rating': 'UR'}​
];​
​
languages = [​
 {'name': 'Python', 'speed': 'Slow',​
 'opinion': ['Terrible', 'Mush']},​
 {'name': 'JavaScript', 'speed': 'Moderate',​
 'opinion': ['Alright', 'Bizarre']},​
 {'name': 'Perl6', 'speed': 'Moderate',​
 'opinion': ['Fun', 'Weird']},​
 {'name': 'C', 'speed': 'Fast',​
 'opinion': ['Annoying', 'Dangerous']},​
 {'name': 'Forth', 'speed': 'Fast',​

 'opinion': ['Fun', 'Difficult']},​
];

You need to get all of these elements out of the fruit variable:

●​ 12

●​ 'AAA'

●​ 2

●​ 'Oranges'

●​ 'Grapes'

●​ 14

●​ 'Apples'

You need to get all of these elements out of the languages variable:

●​ 'Slow'

●​ 'Alright'

●​ 'Dangerous'

●​ 'Fast'

●​ 'Difficult'

●​ 'Fun'

●​ 'Annoying'

●​ 'Weird'

●​ 'Moderate'

Q3. Write a function that takes the following dictionary and returns a new dictionary where the key

and values have been swapped i.e.,3389.5 is now the key for the value “radius_km”

mars_data = {​
 'mass_kg': 6.39e23,​
 'radius_km': 3389.5,​
 'density_g_cm3': 3.93,​
 'surface_gravity_m_s2': 3.71,​
 'escape_velocity_km_s': 5.03,​
 'orbit_semi_major_axis_AU': 1.524,​
 'orbit_period_days': 687,​
 'orbit_eccentricity': 0.0934,​
 'orbit_inclination_deg': 1.85,​
 'atmosphere_co2_percent': 95.3,​
 'atmosphere_n2_percent': 2.7,​
 'atmosphere_ar_percent': 1.6,​
 'atmosphere_o2_percent': 0.13,​
 'atmosphere_pressure_kPa': 0.636,​
 'average_temp_K': 210,​
}

Q4. Write a function that uses a dictionary which translates a DNA string to an RNA string (and

returns it) by replacing ‘A’ with ‘U’, ‘G’ with ‘C’ ,’C’ with ‘G’, and ‘T’ with ‘A’ i.e., ‘AGCT’ would become

‘UCGA’

Part 3. Modules and Packages1
A module is a file containing Python definitions and statements. The file name is the module name

with the suffix .py appended. Within a module, the module’s name (as a string) is available as the

value of the global variable __name__. For example, you could create a file called fibo.py in the

current directory with the following contents:

Fibonacci numbers module​
def fib(n): # write Fibonacci series up to n​
 a, b = 0, 1​
 while a < n:​
 print(a, end=' ')​
 a, b = b, a+b​
 print()​
​
def fib2(n): # return Fibonacci series up to n​
 result = []​
 a, b = 0, 1​
 while a < n:​
 result.append(a)​
 a, b = b, a+b​
 return result

Now enter your notebook and import this module with the following command:

import fibo

This does not add the names of the functions defined in fibo directly to the current namespace; it

only adds the module name fibo there. Using the module name you can access the module

namespace to use the functions:

fibo.fib(1000)​
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987​
fibo.fib2(100)​
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

If you intend to use a function often you can assign it to a local name:

1 Following explanation is modified from the excellent Python documentation
https://docs.python.org/3/tutorial/modules.html

https://docs.python.org/3/glossary.html#term-namespace

fib = fibo.fib​
​
fib(500)​
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

There is a variant of the `import` statement that imports names from a module directly into the

importing module’s namespace. For example:

from fibo import fib, fib2​
fib(500)​
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

This does not introduce the module name from which the imports are taken in the local namespace

(so in the example, fibo is not defined).

There is even a variant to import all names that a module defines:

from fibo import *​
fib(500)​
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

This imports all names except those beginning with an underscore (_). In most cases Python

programmers do not use this facility since it introduces an unknown set of names into the

interpreter, possibly hiding some things you have already defined.

Note that in general the practice of importing * from a module or package is frowned upon, since it

often causes poorly readable code. However, it is okay to use it to save typing in interactive sessions.

If the module name is followed by as, then the name following as is bound directly to the imported

module.

import fibo as fib​
fib.fib(500)​
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

This is effectively importing the module in the same way that import fibo will do, with the only

difference of it being available as fib.

It can also be used when utilising from with similar effects:

from fibo import fib as fibonacci​
fibonacci(500)​
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

https://docs.python.org/3/reference/simple_stmts.html#import

Packages are a way of structuring Python’s module namespace by using “dotted module names”. For

example, the module name A.B designates a submodule named B in a package named A. Just like

the use of modules saves the authors of different modules from having to worry about each other’s

global variable names, the use of dotted module names saves the authors of multi-module packages

like NumPy or Pillow from having to worry about each other’s module names.

Suppose you want to design a collection of modules (a “package”) for the uniform handling of sound

files and sound data. There are many different sound file formats (usually recognized by their

extension, for example: .wav, .aiff, .au), so you may need to create and maintain a growing

collection of modules for the conversion between the various file formats. There are also many

different operations you might want to perform on sound data (such as mixing, adding echo, applying

an equalizer function, creating an artificial stereo effect), so in addition you will be writing a

never-ending stream of modules to perform these operations. Here’s a possible structure for your

package (expressed in terms of a hierarchical filesystem):

sound/ Top-level package​
 __init__.py Initialize the sound package​
 formats/ Subpackage for file format conversions​
 __init__.py​
 wavread.py​
 wavwrite.py​
 aiffread.py​
 aiffwrite.py​
 auread.py​
 auwrite.py​
 ...​
 effects/ Subpackage for sound effects​
 __init__.py​
 echo.py​
 surround.py​
 reverse.py​
 ...​
 filters/ Subpackage for filters​
 __init__.py​
 equalizer.py​
 vocoder.py​
 karaoke.py​
 ...

When importing the package, Python searches through the directories in PYTHONPATH (i.e.,

sys.path) looking for the package subdirectory.

The __init__.py files are required to make Python treat directories containing the file as

packages (unless using a namespace package, a relatively advanced feature). This prevents

directories with a common name, such as string, from unintentionally hiding valid modules that

occur later on the module search path. In the simplest case, __init__.py can just be an empty

https://docs.python.org/3/glossary.html#term-namespace-package

file, but it can also execute initialization code for the package or set the __all__ variable,

described later.

Users of the package can import individual modules from the package, for example:

import sound.effects.echo

This loads the submodule sound.effects.echo. It must be referenced with its full name.

import sound.effects.echo

An alternative way of importing the submodule is:

from sound.effects import echo

This also loads the submodule echo, and makes it available without its package prefix, so it can be

used as follows:

echo.echofilter(input, output, delay=0.7, atten=4)

Yet another variation is to import the desired function or variable directly:

from sound.effects.echo import echofilter

Again, this loads the submodule echo, but this makes its function echofilter() directly

available:

echofilter(input, output, delay=0.7, atten=4)

Note that when using from package import item, the item can be either a submodule (or

subpackage) of the package, or some other name defined in the package, like a function, class or

variable. The import statement first tests whether the item is defined in the package; if not, it

assumes it is a module and attempts to load it. If it fails to find it, an ImportError exception is

raised.

Q5. Complete this function and put it in a file called lab_functions.py in the same folder as your

notebook

https://docs.python.org/3/library/exceptions.html#ImportError

lab_functions.py​
def smallest_number(list_of_numbers):​
​ """The functions takes a list of numbers (integers or floats) and

 finds the smallest number and returns using only a for loop

 and if statement"""​
 pass

​
Then in your notebook import that function using import lab_functions and show the output

for lab_functions.smallest_number([54, 100, 12]).

Q6. In maths we often represent things using an infinite sum (also known as a series). For example,

we can calculate the value of using the following expression. π

 π = 4 * 1
1 − 1

3 + 1
5 − 1

7 + ...()
In python we can’t actually do something infinitely! Write a function with a docstring that calculates

and returns the value of using the series above to a user specified number of terms (i.e., if we π
stopped at the + … above then it would to n=4). Then import and execute this function for n=100.

Q7. Create a package called “lab_package” that contains a small.py module with the function from

Q5 and a pi.py containing the function from Q6. Demonstrate you have done this correctly by

importing both functions and executing them e.g.,

lab_package.small.smallest_number(list(range(100))

Part 4: Namespaces2

Roughly speaking, namespaces are just containers for mapping names to data objects (like a specific

variable, list, dictionary, lazy enumerate/zip/range, or function definition). Such a “name-to-object”

mapping allows us to access an object by a name that we’ve assigned to it. E.g., if we make a simple

string assignment via a_string = "Hello string", we create a reference to the "Hello
string" object, and henceforth we can access it via its variable name a_string.

We can picture a namespace as a Python dictionary structure, where the dictionary keys represent

the names and the dictionary values the object itself (and this is also how namespaces are currently

implemented in Python), e.g.,

a_namespace = {'name_a':object_1, 'name_b':object_2, ...}

Now, the tricky part is that we have multiple independent namespaces in Python, and names can be

reused in different namespaces (only the objects are unique), for example:

a_namespace = {'name_a':object_1, 'name_b':object_2, ...}​
b_namespace = {'name_a':object_3, 'name_b':object_4, ...}

2 Drawn on https://sebastianraschka.com/Articles/2014_python_scope_and_namespaces.html

So namespaces can exist independently from each other and that they are structured in a certain

hierarchy, which brings us to the concept of “scope”. The “scope” in Python defines the “hierarchy

level” in which we search namespaces for certain “name-to-object” mappings.

For example, let us consider the following code:

i = 1​
def foo():​
 i = 5​
 print(i, 'in foo()')​
print(i, 'global')​
foo()

output ​
1 global​
5 in foo()

Here, we just defined the variable name i twice, once on the foo function.

●​ foo_namespace = {'i':object_3, ...}
●​ global_namespace = {'i':object_1, 'name_b':object_2, ...}

So, how does Python know which namespace it has to search if we want to print the value of the

variable i? This is where scope comes into play.

Multiple namespaces can exist independently from each other and that they can contain the same

variable names on different hierarchy levels. The “scope” defines on which hierarchy level Python

searches for a particular “name” to get its associated object. Now, the next question is: “In which

order does Python search the different levels of namespaces before it finds the ‘name-to-object’

mapping?

​
 To answer is: It uses the LEGB-rule, which stands for

Local -> Enclosed -> Global -> Built-in,

where the arrows should denote the direction of the namespace-hierarchy search order.

●​ Local is the “bottom” level; this would be the inside of a simple function or the innermost

(deepest/most-indented) function if a function is defined in a function.

●​ Enclosed if we have a function defined inside a function then the enclosed namespace would

be anything defined in the outer functions. This namespace doesn’t always exist, it only

exists if we need extra namespace layers between the local and the global (such as with a

nested function: top level/no-indent is global, then function definition is enclosed, and a

function on the inside of that is local).

●​ Global refers to the uppermost level of the executing script itself i.e., the code that isn’t

indented.

●​ Built-in are special names that Python reserves for itself.

So, if a particular name:object mapping cannot be found in the local namespaces, the namespaces of

the enclosed scope will be searched next. If the search in the enclosed scope is unsuccessful, too,

Python moves on to the global namespace, and eventually, it will search the built-in namespace

(sidenote: if a name cannot be found in any of the namespaces, a NameError will be raised).

Namespaces can also be further nested, for example if we import modules. In those cases we have to

use prefixes to access those nested namespaces. Let me illustrate this concept in the following code

block:

import numpy​
import math​
import scipy​
​
print(math.pi, 'from the math module')​
print(numpy.pi, 'from the numpy package')​
print(scipy.pi, 'from the scipy package')​
​
3.141592653589793 from the math module​
3.141592653589793 from the numpy package​
3.141592653589793 from the scipy package

This is also why we have to be careful if we import modules via “from a_module import *”,

since it loads the variable names into the global namespace and could potentially overwrite already

existing variable names.

Q8. Explain what each of the following bits of code will output and why in terms of built-in, global,

nested, and local namespaces:

x = 10 ​
def print_x():​
 x = 5​
 print(f"Local x: {x}")​
​
print_x()​
print(f"Global x: {x}")

x = ['1a', 'b', 'c']​
print(len(x))​
def len(x):​
 return 42​
​
print(len(x))

a_var = 'global value'​
​
def outer():​
 a_var = 'enclosed value'​
 def inner():​
 a_var = 'local value'​
 print(a_var)​
 inner()​
​
outer()

	Lab 3: While, Modules, and Namespaces
	Part 0: Submitting clean notebooks
	Part 1: While Loops
	Part 2: Dictionaries
	Part 3. Modules and Packages1
	Part 4: Namespaces2

