
Lab 5: Object Oriented

Programming
This assignment will involve figuring out how to use these new classes with only the lecture material

to build off. A lot of programming involves figuring out how to use approaches or packages just from

the documentation. I’m deliberately not providing a lot of information in this handout to try and give

you practice gaining this slightly nebulous skill. If you feel stuck don’t despair, use the

documentation and online tutorials to figure it out. If you are still stuck after genuinely trying that to

the best of your ability then the TAs are there to give you a hand.

Remember to submit your documented/clean notebook to brightspace.

Part 1: Creating a Vector class
There are some great python linear algebra packages (that we will use later in the course) but it is

always good to understand roughly how operations work before trusting blindly to complex packages

to do it for you. To serve this aim and to give you practice with classes, the following questions will

involve you creating a class which can represent a vector.

We are only going to be focused on vectors of length 2 which represent a position in 2-dimensional

space. You can just think of these as x and y coordinates in a standard cartesian plane.

Q1 [4 points]. Write a Vector class that allows you to define and create a simple 2-dimensional

vector. This should:

-​ Have a clear docstring explaining what the class is and how it can be instantiated (created).

-​ Implement an __init__ which takes two input values, checks whether they are valid

floats or integers (and should cause an error using raise ValueError(MESSAGE) where

MESSAGE is replaced with a string containing an appropriate error message) and assigns

them to x and y attributes.

-​ Should implement a __repr__ method which returns a string representation of the vector

(this means print will work as expected).

>>> vector1 = Vector(5, 10)​
>>> vector1.x == 5​
True​
>>> vector1.y == 10​
True​
>>> print(vector1)​
Vector(5, 10)​
>>> vector2 = Vector(1.2, -5.3)​
>>> vector3 = Vector('a', 'z')​
Error message explaining that x and y must be integers or floats

Q2 [2 points]. A vector’s magnitude can be calculated using the following formula: √(x2 + y2). Copy

your code from the previous solution and add a method which returns the magnitude of a Vector

object. You can get a function to calculate the square root by using python’s built-in math module

(https://docs.python.org/3/library/math.html)

>>> vector1 = Vector(5, 10)​
>>> vector1.magnitude()​
11.18033​
>>> Vector(-1, -1).magnitude()​
1.4142​
>>> Vector(0, 0).magnitude()​
0.0

Q3 [4 points]. Vector addition and subtraction works as follows:

v1+v2=⟨v1x + v2x, v1y + v2y⟩

v1-v2=⟨v1x - v2x, v1y - v2y⟩

Copy your code from the previous answers and add an __add__ and __sub__ method to your

Vector class so that + and - operators work correctly. This should:

-​ Check whether the thing being added or subtracted to your Vector is also a Vector (using

type (Note: this is only expected to work for Vector +/- other_thing, other_thing +/- Vector

has other complications and will automatically throw a different error!)

-​ Return a new Vector with the correct values

-​ Include appropriate docstrings.

>>> Vector(-1, -1) + Vector(10, -4)​
Vector(44,19)​
​
>>> Vector(40, 10) - Vector(-4, -9)​
Vector(44,19)​
​
>>> Vector(13, 1) + 1​
ValueError: Can only add Vector objects​
>>> Vector(13, 1) - 1​
ValueError: Can only subtract Vector objects

Q4 [4 points]. Vectors can be multiplied by a scalar (a single number) using the following formula:

v1 * scalar = (scalar * v1x, scalar * v1y).

Copy your solution to the previous question and add a __mul__ method so you can multiply your

vector by a scalar and return a new vector. You can implement the opposite ordered operation (i.e.,

scalar * vector) by defining the method __rmul__ to return vector * scalar. Your code should check

whether the scalar is a valid integer or float.

https://docs.python.org/3/library/math.html

>>> Vector(-1, -1) * 5​
Vector(-5,-5)​
​
>>> 5 * Vector(-1, -1)​
Vector(-5,-5)​
​
>>> Vector(10, -4) * 0​
Vector(0,0)​
​
>>> Vector(-1, -1) * Vector(10, -4)​
ValueError: Vector(10,-4) must be int or float

Q5 [3 points]. The dot product of 2 vectors is defined as

v1 · v2 = v1x × v2x + v1y × v2y

Copy your solution from the previous question and modify __mul__ so it also calculates the dot

product if both inputs are vectors. Make sure you update the docstring appropriately and that scalar

multiplication still works.

>>> Vector(-1, -1) * 5​
Vector(-5,-5)

​
>>> 5 * Vector(-1, -1)​
Vector(-5,-5)

​
>>> Vector(2,2) * Vector(-1, -1)​
- 4

​
>>> Vector(2,7) * Vector(-4, 9)​
55

​
>>> Vector(2,2) * 'a'​
ValueError: a must be int or float

Q6 [4 points]. We can divide a vector by a scalar using the following formula: ​
v1 / scalar= ⟨v1x /scalar, v1y /scalar⟩.

We can also calculate the normalized vector by dividing it by its magnitude (i.e., a scalar):

v1 / |v1| = ⟨v1x / |v|, v1y / |v|⟩.

Copy your vector implementation and add a __truediv__ method which divides a vector by a
scalar (including checking for a valid int/float that is not 0).

Then implement a normalise() method which uses this to return the normalised vector (i.e., a

new vector in the same direction but with magnitude 1).

Part 2: Inheritance
Classes can inherit attributes and methods from a specified parent class. We can also override those

parent attributes and methods by reimplementing them in our child class. See the lecture slides

from this week or the Python class documentation

(https://docs.python.org/3/tutorial/classes.html#inheritance) for more explanation.

Q7 [8 points]. Using inheritance create a BizzaroFloat class that inherits from float and works

as a normal float apart from when using special comparison methods. For each of the following

reimplement them so BizzaroFloat returns the opposite bool value to the normal behavior (i.e.,

BizzaroFloat(5) == BizzaroFloat(10) returns True).

x == y x.__eq__(y)

x != y x.__ne__(y)

< __lt__

> __gt__

Part 3: Putting it all together
Q8 [8 points]. A video game has different types of characters, each with their own way of attacking

other characters. Copy GameCharacter definition into your notebook, add docstrings, and

implement __repr__ which displays all the attribute values when you print a GameCharacter

object.

Then define a Warrior and a Mage class which inherit from GameCharacter but also

implement their own attack method. This attack() method should take another Warrior or

Mage object as an argument and apply the appropriate attack damage to the health attribute of the

other character. For the Warrior the attack() should deal 25 damage to the other character’s

health and reduce the warrior’s own energy by 25. For Mage the attack() should decrease the

other character’s health by 40 and reduce the mage’s own energy by 30.

Show your code works by creating a Mage and a Warrior and having them attack each other at

least once then printing out their current health and energy levels.

class GameCharacter:​
 def __init__(self, name, health=100):​
 self.name = name​
 self.health = health​
 self.energy = 100

​
 def attack(self, other_character):​

https://docs.python.org/3/tutorial/classes.html#inheritance

 pass

​
 def rest(self):​
 recovered = min(25, 100 - self.energy)​
 self.energy += recovered​
 return recovered

	Lab 5: Object Oriented Programming
	Part 1: Creating a Vector class
	Part 2: Inheritance
	Part 3: Putting it all together

