
 

Lab 8: Pandas and Plotting1 

Part 0: Submission/Reference Materials  
Remember to read (and write!) good documentation and use the internet to find code examples.  

Finding and using appropriate/accurate reference materials is hard to teach directly, but tends to be 

what separates bad scientific programmers from good ones!   
 

If you get stuck: 

- Review the lecture material 

- Check the docstrings of functions you are trying to use (hint: use ?function in jupyter) 

- The pandas official documentation includes all of the commands you need to complete this 

week’s practical https://pandas.pydata.org/docs/user_guide/index.html#user-guide 

- Use online resources like stackoverflow, w3schools, realpython etc. (but make sure you don’t 

blindly copy code without working out HOW it works). 

- Looking up materials is totally fine but remember if you copy code (or autocomplete it) 

directly from any source, you MUST cite where you got it from in a comment next to the 

code. 

 

Submit this assignment as a formatted notebook - include an explanation of your answers and make 

sure every function has a clear docstring that explains what it does, its arguments, and what it 

returns. This will be part of the grading of each of your answers. 

Part 1: Set-Up and Data Wrangling  
In today’s assignment you are going to parse, clean, explore, and visualise a dataset from a study in 

January 2018 that measured the average number of steps taken that month compared to their age 

and income.  This is an open simulated dataset so there are no restrictions on how it is used (despite 

it containing sensitive personal information which would normally require research ethics and/or 

restrictions).  This sort of dataset could be collected by a gerontology researcher looking at activity 

levels as we age or an insurance company investigating whether step-trackers could be used to 

incentivise discounts on premiums. 

However, before we play with that data we are going to make sure everything works and make some 

basic DataFrames from scratch.  

%matplotlib inline 
# Import libraries 
import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 

1 Modified from UCSD COGS108 Assignment 2 



 

 
# Round decimals when displaying DataFrames 
pd.set_option('display.precision', 2) 

 

Q1 [3 points]. Create a DataFrame called fruits that looks like this using at least 2 different 

approaches (e.g., with and without creating pd.Series first). 

 

Q2 [4 points]: Create a DataFrame entirely within Python that represents measurements from an 

experiment with: 

● 5 samples (sample_id: A1, A2, A3, A4, A5) 

● 3 conditions (control, treatment1, treatment2) 

● Measurement values should be random values between 10 and 50 (hint: look at the 

documentation for np.random) 

Now that that is out of the way, for the rest of this assignment you will be working with two data files 

that contain information on people’s step counts. The two files and their columns (also called 

“fields”) are: 

● age_steps.csv: Contains one row for each person. 

○ id: Unique identifier for the person. 

○ age: Age of the person. 

○ steps: Number of steps the person took on average in January 2018. 

 

● incomes.json: Contains one record for each person. 

○ id: Unique identifier for the person. Two records with the same ID between 

age_steps.csv and incomes.json correspond to the same person. 

○ last_name: Last name of the person. 

○ first_name: First name of the person. 

○ income: Income of the person in 2018. 

Download this data using the following URL: 

https://maguire-lab.github.io/scientific_computing/static_files/practicals/lab8_data.zip 

Unzip the lab8_data.zip into the folder containing your lab practical notebook for this week. 

Q3 [2 points]: Load the age_steps.csv file into a pandas DataFrame named df_steps. Print out the 

number of rows and columns in df_steps 

Q4 [2 points]:  Load the incomes.json file into a pandas DataFrame called df_income. Print out the 

number of rows and columns in df_income  

https://maguire-lab.github.io/scientific_computing/static_files/practicals/lab8_data.zip


 

Q5 [2 points]:  Drop the first_name and last_name columns from the df_income DataFrame. The 

resulting DataFrame should only have two columns.  Remember you can use the keyword-arg  axis 
with most pd.DataFrame and pd.Series class methods to control whether it works on the 

rows or the columns. 

Q6 [6 points]: Merge the df_steps and df_income DataFrames into a single combined DataFrame 

called df using the id column to match rows together. The final DataFrame should have 10,135 rows 

and 4 columns: id, income, age, and steps.  Using assert statements write code that checks your 

merged DataFrame contains the correct number of rows/columns and that the column names are 

correct.  This (and all future questions can generally be done with 1 or 2 built-in pandas methods); 

try to avoid writing for loops as they are quite inefficient for DataFrame operations.   

Q7 [2 points]: Reorder the columns of df so that they appear in the order: id, age, steps, then 

income.  (hint: you can select several columns by passing a list of names to the DataFrame). 

Q8 [3 points]: You may have noticed something strange: the merged df DataFrame has fewer rows 

than either of df_steps and df_income. Why did this happen? (If you’re unsure, check out the 

documentation for the pandas method you used to merge these two datasets. Take note of the 

default values set for this method’s parameters.) 

Please select the one correct explanation below and explain it in a comment along with code that 

justifies your answer? 

1. Some steps were recorded inaccurately in df_steps. 

2. Some incomes were recorded inaccurately in df_income. 

3. There are fewer rows in df_steps than in df_income. 

4. There are fewer columns in df_steps than in df_income. 

5. Some id values in either df_steps and df_income were missing in the other 

DataFrame. 

6. Some id values were repeated in df_steps and in df_income. 

Part 2: Data Cleaning  
Once you’ve wrangled your dataset into a single DataFrame object then comes the second major 

challenge: data cleaning.  This dataset is already relatively clean but there are still some issues for 

you to fix.   

The most common issue to deal with is missing values. There are many reasons data might contain 

missing values. Here are two common ones: 

● Nonresponse. For example, people might have left a field blank when responding to a 

survey, or left the entire survey blank. 

● Lost in entry. Data might have been lost after initial recording. For example, a disk cleanup 

might accidentally wipe older entries of a database. 

In general, it is not appropriate to simply drop missing values from the dataset or pretend that if 

filled in they would not change your results. Systematic biases in which data is missing (this is a type 

of selection bias called ascertainment or sampling bias) are a very common reason why analyses are 

misleading.  For example, psephologists have mispredicted election results by not correcting for the 



 

fact that supporters of certain parties are less likely to respond to polls.  In this particular dataset, 

however, the missing values occur completely at random. This criteria allows us to drop missing 

values without significantly affecting our conclusions. 

Q10 [2 points]: How many values are missing in the income column of df?  

Q11 [2 points]:  Create a new dataframe clean_df in which all rows from df that have missing 

values have been removed. 

Q12 [2 points]: We can now compute the average income. If your clean_df contains the right 

values, clean_df['income'].mean() should produce the value 25508.84.  Write an assert 

statement that makes sure this is true.    Suppose that we didn’t drop the missing incomes. Compare 

the clean_df['income'].mean() and df['income'].mean() outputs and explain which 

of the following is occurring?  

1. No change; df['income'].mean() will ignore the missing values and output 

25508.84. 

2. df['income'].mean() will produce an error. 

3. df['income'].mean() will output 0. 

4. df['income'].mean() will output nan (not a number). 

5. df['income'].mean() will fill in the missing values with the average income, then 

compute the average. 

6. df['income'].mean() will fill in the missing values with 0, then compute the average. 

Q13 [2 points]: Suppose that missing incomes did not occur at random, and that individuals with 

incomes below $10000 a year are less likely to report their incomes. If so, which of the following 

statements below would be true? 

1. clean_df['income'].mean() will likely output a value that is the same as the 

population’s average income 

2. clean_df['income'].mean() will likely output a value that is smaller than the 

population’s average income. 

3. clean_df['income'].mean() will likely output a value that is larger than the 

population’s average income. 

4. clean_df['income'].mean() will raise an error. 

 Part 3: Data Visualization 

Although pandas only displays a few rows of a DataFrame at a time, we can use data visualizations 

to quickly determine the distributions of values within our data. 

Helpfully pandas comes with some plotting capabilities built-in accessed via DataFrame.plot (look 

at [https://pandas.pydata.org/pandas-docs/stable/user_guide/visualization.html for examples). This 

functionality is built on top of  matplotlib. We will use some matplotlib functions to tweak our 

plots. 

Q14 [6 points]: Plot a histogram of the age column with 25 bins and set appropriate axis labels and 

title using the following matplotlib.pyplot functions. 

https://pandas.pydata.org/pandas-docs/stable/user_guide/visualization.html
https://matplotlib.org/


 

plt.xlabel("STRING WITH X-AXIS LABEL") 
plt.ylabel("STRING WITH Y-AXIS LABEL") 
plt.title("STRING WITH PLOT TITLE") 

By looking at the plot, what is the approximate average (mean) age of the individuals in clean_df? 

How different is your visually estimated value from the actual mean age calculated directly from the 

clean_df?  

Q15 [6 points]: Plot a histogram of the steps column with 25 bins with clear labels.  By looking at 

the plot you just generated, approximately how many people in clean_df do the data suggest took 

no steps?  Calculate and compare your estimate to the actual value in the DataFrame. 

Q16 [6 points]: Plot a histogram of the income column with 25 bins. Which of the following 

statements is true about the income of the individuals included in clean_df? Include code that 

justifies your answer. (Note: Be sure to consider the bin size of the x-axis when interpreting the plot.) 

● A) Most people in clean_df had no income in 2018 

● B) Most people in clean_df made a six figure salary in 2018 

● C) Most people in clean_df made a salary of more than 200000 USD in 2018 

● D) A few people in clean_df made a lot more money than the typical person in 

clean_df 

Q17 [6 points]: Plot the data  in the age, steps, and income columns using the pandas 

scatter_matrix function.  Explain what this type of plot shows and determine the approximate 

age of the wealthiest person in clean_df and compare it to the real value calculated directly from 

the DataFrame. 

Part 4: Data Pre-Processing 
In the above sections, we performed basic data cleaning and visualization. In practice, these two 

components of an analysis pipeline are often done iteratively. We go back and forth between looking 

at the data, checking for issues, and cleaning the data.  

Let’s continue with an iterative procedure of data cleaning and visualization, addressing some issues 

that we noticed after visualizing the data. 

Q18 [3 points]: In the visualization of the steps column, we notice a large number of -1 values. 

Count how many rows in clean_df have -1 in their steps column. Since it’s impossible to walk a 

negative number of steps, we will treat the negative values as missing data. Drop the rows with 

negative steps from clean_df. Your answer should modify clean_df itself. 

You may have noticed that the values in income are not normally distributed which can hurt 

prediction ability in some scenarios. To address this, we will perform a log transformation on the 

income values.  First though, we will have to deal with any income values that are 0. Note that 

these values are not impossible values — they may, for example, represent people who are 

unemployed. So, we shouldn’t remove these individuals; however, when we go to log-transform 

these data, we can’t (mathematically) have any zero values. We’ll replace the zeroes with ones, to 



 

allow for log transformation, while retaining the fact that these individuals' income was lower than 

others in the dataset. 

Q19 [6 points]: Add a new column to clean_df called income10. It should contain the same 

values as income with all 0 values replaced with 1. Now, transform the income10 column using a 

log-base-10 transform using the np.log10 function.  Finally, plot a histogram for income10 data 

after the data transformation. 

Part 5: Basic Analyses 
Now that we have wrangled and cleaned our data, we can start doing some simple analyses. Here we 

will explore some basic descriptive summaries of our data, look into the inter-relations (correlations) 

between variables, and ask some simple questions about potentially interesting subsets of our data. 

Q20 [8 points]: Perform the following analyses: 

● Use the describe pandas method to check and print a descriptive summary of the data. 

● Using the quantile method, how many steps would you have to walk to be in the top 10% 

of walkers?   

● What is the average income for people over the age of 65?  

● Using a built-in pandas method (check the documentation), calculate the pairwise 

correlations between all variables. Which variable is most correlated with age (aside from 

age itself)?  Which variable is most correlated with income (aside from income and 

income10)?  
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