
 

Lab 9: Numpy and 

Randomness 

Part 0: Submission/Reference Materials  
Remember to read (and write!) good documentation and use the internet to find code examples.  

Finding and using appropriate/accurate reference materials is hard to teach directly, but tends to be 

what separates bad scientific programmers from good ones!  ​
 

If you get stuck: 

-​ Review the lecture material 

-​ Check the docstrings of functions you are trying to use (hint: use ?function in jupyter) 

-​ The pandas official documentation includes all of the commands you need to complete this 

week’s practical https://pandas.pydata.org/docs/user_guide/index.html#user-guide 

-​ Use online resources like stackoverflow, w3schools, realpython etc. (but make sure you don’t 

blindly copy code without working out HOW it works). 

-​ Looking up materials is totally fine but remember if you copy code (or autocomplete it) 

directly from any source, you MUST cite where you got it from in a comment next to the 

code. 

 

Submit this assignment as a formatted notebook - include an explanation of your answers and make 

sure every function has a clear docstring that explains what it does, its arguments, and what it 

returns. This will be part of the grading of each of your answers. 

Part 1: Set-Up and Random Number Generation 
In today's assignment, you are going to use NumPy's random module to simulate, model, and analyze 

statistical data. You'll apply these methods to solve problems in optimization, hypothesis testing, and 

confidence interval calculation. 

Let's start by importing the necessary libraries and creating our random number generator object 

with a random seed for reproducibility: 

import numpy as np​
rng = np.random.default_rng(42) 

 

Q1 [4 points]: Create a function called generate_sample_data that takes the following 

parameters: 

●​ distribution_type: A string specifying the distribution ('normal', 'uniform', 'exponential') 

 



 

●​ sample_size: An integer specifying the number of samples to generate 

●​ params: A dictionary containing the distribution parameters (e.g., for normal: 'loc' for mean 

and 'scale' for standard deviation) 

The function should return a 1D NumPy array containing the generated random samples. Include at 

least 3 different distributions. 

Q2 [4 points]: Create a function called calculate_statistics that takes a sample and returns 

the mean, median, standard deviation, and interquartile range. Test this function on three different 

samples (normal, uniform, exponential) of size 1000 generated using your function from Q1. 

Compare the calculated statistics with the theoretical values for each distribution. 

Part 2: Monte Carlo Estimation 
In this section, we’ll use Monte Carlo methods to estimate the probability of complex events without 

having to solve them analytically.  We do this by randomly simulating event occurring and measuring 

the outcomes over and over again.  The distribution of outcomes can then be used to calculate the 

probability of specific observed outcomes.  

Q3 [6 points]: We are interested in calculating the probability of rolling a total value or greater across 

multiple dice using Monte Carlo estimation (simulations). Create a function called 

estimate_dice_probability that calculates the probability of rolling >= a target value 

(target) on 1 or more dice (n_dice) by simulating a user-specified number of rolls (num_sims). 

 The function should: 

●​ Accept parameters for the number of dice, the target total value, and the number of 

simulations 

●​ Simulate rolling these dice as many times as the num_sims and calculating the total values 

each time  

●​ Estimate the probability of rolling a total greater than or equal to the target value on that 

number of dice (i.e., what proportion of simulated rolls resulted in a total >= the target) 

Use your function to estimate the probability of getting a sum greater than 8 when rolling three 

six-sided dice. How does this compare to the exact probability (115 possible rolls on 3 dice >= 8 out 

of 216 possible outcomes = 53.7%) 

Part 3: Random-search Optimization 

Q4 [6 points]: Create a function called optimize_function that uses random search to find the 

global minimum of a complex function which takes 2 parameters (i.e., if z = f(x,y) find the values of x 

and y that result in the lowest possible value for z). Your optimisation function should: 

●​ Accept the following parameters: 

○​ a function to minimize with 2 parameters (x,y) that returns a single value (z) 

○​ bounds of the x,y parameter space (i.e., if n = 10, then you are searching for the 

optimal x between x=0 and x=10 and the optimal y between y=0 and y=10) 

 



 

○​ How many random x and y values to try 

●​ Generate randomly distributed x and y values within the bounds 

●​ Calculate the value of z for your input function for each of these x and y values 

●​ Return the value of x and y that resulted in the lowest value of z 

 

You can test your optimisation function by finding the x and y that cause test_function to 

return the lowest value : 

def test_function(x, y):​
    """​
    A complex 2D function with multiple local minima.​
    ​
    Parameters:​
    x (float or array): Coordinate to evaluate​
    y (float or array): Coordinate to evaluate​
    Returns:​
    float or array: Function value at the given coordinate​
    """​
    return x**2 * np.sin(5 * x/y) + 0.2 * np.cos(16 * x) * y 

 

Search within the bounds (0, 10), using 10000 random points and report the found minimum value 

and the associated x and y values. 

Part 4: Hypothesis Testing Using Simulation 
In this section, you'll use random sampling to perform hypothesis tests when analytical solutions are 

difficult to derive. 

Q5 [6 points]: Create a function called permutation_test that performs a two-sample 

permutation test for the difference in means. The function should: 

●​ Accept two samples of equal size (i.e., same number of values in each) and the number of 

permutations to perform 

●​ Calculate the observed difference in means between the two samples 

●​ Randomly permute the two samples to shuffle values between them (this can be done by 

combining both samples into one long array, shuffling this long array, and then splitting the 

long array in half). 

●​ Calculate the difference in mean between these 2 permuted sample arrays for each 

permutation 

●​ Return the p-value (the proportion of permuted differences that are more extreme than the 

observed difference) 

Test your function on samples generated from: 

 



 

1.​ Two normal distributions with the same mean (µ=0) but different standard deviations (σ₁=1, 

σ₂=2) 

2.​ Two normal distributions with different means (µ₁=0, µ₂=0.5) and the same standard 

deviation (σ=1) 

Use a sample size of 50 for each group and 1000 permutations. 

Part 5: Confidence Intervals Using Simulation 
In this section, you'll use simulation methods to construct confidence intervals for statistics when 

analytical solutions are complex or unavailable. 

Q6 [6 points]: Create a function called bootstrap_ci that calculates bootstrap confidence 

intervals for the mean of a sample. The function should: 

●​ Accept a sample (i.e., an array of numbers), the confidence level (e.g., 0.95), and the number 

of bootstrap resamples 

●​ Generate bootstrap resamples by sampling with replacement from the original sample 

●​ Calculate the mean of each bootstrap resample 

●​ Return the confidence interval using the percentile method 

Test your function by calculating 95% confidence intervals for the mean of 1000 numbers drawn from 

a gamma distribution with a shape of 3.5 and a scale of 2.2. 

 


	Lab 9: Numpy and Randomness 
	Part 0: Submission/Reference Materials  
	Part 1: Set-Up and Random Number Generation 
	Part 2: Monte Carlo Estimation 
	Part 3: Random-search Optimization 
	Part 4: Hypothesis Testing Using Simulation 
	Part 5: Confidence Intervals Using Simulation 


